• Title/Summary/Keyword: Decision-making System

Search Result 2,892, Processing Time 0.028 seconds

A Study on the Correspondence and the Autonomy between the Act on the Guarantee of Rights of and Support for Persons with Developmental Disabilities and the Similar Ordinances of the Local Governments (발달장애인 권리보장 및 지원에 관한 법률과 지방자치단체 유사조례 간의 연계성과 자치성에 관한 연구)

  • Jeon, Jihye;Lee, Sehee
    • 한국사회정책
    • /
    • v.25 no.2
    • /
    • pp.367-402
    • /
    • 2018
  • This study analyzed the relationship between the act on the guarantee of rights of and support for persons with developmental disabilities(Act for PWDD) and the similar ordinance of the local governments based on this law and focused on the correspondence(the rate of reflection) and the autonomy(differentiation). As of October 2017, 63 local government regulations and Act for PWDD were analyzed in this study. The results of the analysis are as follows: First, the rate of reflection in the ordinance of Act for PWDD was different according to the clause. In the aspect of emphasizing welfare support, the agreement between local ordinance and rate was high. While the Act for PWDD emphasized the rights of persons with developmental disabilities, there was little information about their right in the ordinance of local governments. This is evidence that current ordinance is based on the protective point of view for people with developmental disabilities. In the future, policy measures will be needed to ensure that respect for decision-making by persons with developmental disabilities and rights guarantees are included in the bylaws. Second, there is a provision that the rate of ordinance reflection is 0%, which may be guaranteed by other laws in the area, so it does not mean the absence of related system in the region, but there is possibility of institutional blind spot. In the future, consideration should be given to the complementarity of other legal systems in the area with developmental disabilities, so that persons with developmental disabilities should not be placed in institutional blind spots. Third, the autonomy(differentiation) of local ordinance was examined from the contents aspect and the administrative aspect to help practical implementation. The differentiation between the ordinances vary. Emphasizing the responsibilities of the head of the organization, emphasizing the fact-finding survey, setting up the welfare committee, or adding local needs were included to the ordinance. Local governments considering the enactment of ordinances in the future should refer to these cases and establish enactable local ordinances that take advantage of the characteristics of local autonomy.

Analysis of News Agenda Using Text mining and Semantic Network Analysis: Focused on COVID-19 Emotions (텍스트 마이닝과 의미 네트워크 분석을 활용한 뉴스 의제 분석: 코로나 19 관련 감정을 중심으로)

  • Yoo, So-yeon;Lim, Gyoo-gun
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.47-64
    • /
    • 2021
  • The global spread of COVID-19 around the world has not only affected many parts of our daily life but also has a huge impact on many areas, including the economy and society. As the number of confirmed cases and deaths increases, medical staff and the public are said to be experiencing psychological problems such as anxiety, depression, and stress. The collective tragedy that accompanies the epidemic raises fear and anxiety, which is known to cause enormous disruptions to the behavior and psychological well-being of many. Long-term negative emotions can reduce people's immunity and destroy their physical balance, so it is essential to understand the psychological state of COVID-19. This study suggests a method of monitoring medial news reflecting current days which requires striving not only for physical but also for psychological quarantine in the prolonged COVID-19 situation. Moreover, it is presented how an easier method of analyzing social media networks applies to those cases. The aim of this study is to assist health policymakers in fast and complex decision-making processes. News plays a major role in setting the policy agenda. Among various major media, news headlines are considered important in the field of communication science as a summary of the core content that the media wants to convey to the audiences who read it. News data used in this study was easily collected using "Bigkinds" that is created by integrating big data technology. With the collected news data, keywords were classified through text mining, and the relationship between words was visualized through semantic network analysis between keywords. Using the KrKwic program, a Korean semantic network analysis tool, text mining was performed and the frequency of words was calculated to easily identify keywords. The frequency of words appearing in keywords of articles related to COVID-19 emotions was checked and visualized in word cloud 'China', 'anxiety', 'situation', 'mind', 'social', and 'health' appeared high in relation to the emotions of COVID-19. In addition, UCINET, a specialized social network analysis program, was used to analyze connection centrality and cluster analysis, and a method of visualizing a graph using Net Draw was performed. As a result of analyzing the connection centrality between each data, it was found that the most central keywords in the keyword-centric network were 'psychology', 'COVID-19', 'blue', and 'anxiety'. The network of frequency of co-occurrence among the keywords appearing in the headlines of the news was visualized as a graph. The thickness of the line on the graph is proportional to the frequency of co-occurrence, and if the frequency of two words appearing at the same time is high, it is indicated by a thick line. It can be seen that the 'COVID-blue' pair is displayed in the boldest, and the 'COVID-emotion' and 'COVID-anxiety' pairs are displayed with a relatively thick line. 'Blue' related to COVID-19 is a word that means depression, and it was confirmed that COVID-19 and depression are keywords that should be of interest now. The research methodology used in this study has the convenience of being able to quickly measure social phenomena and changes while reducing costs. In this study, by analyzing news headlines, we were able to identify people's feelings and perceptions on issues related to COVID-19 depression, and identify the main agendas to be analyzed by deriving important keywords. By presenting and visualizing the subject and important keywords related to the COVID-19 emotion at a time, medical policy managers will be able to be provided a variety of perspectives when identifying and researching the regarding phenomenon. It is expected that it can help to use it as basic data for support, treatment and service development for psychological quarantine issues related to COVID-19.

Analysis of Literatures Related to Crop Growth and Yield of Onion and Garlic Using Text-mining Approaches for Develop Productivity Prediction Models (양파·마늘 생산성 예측 모델 개발을 위한 텍스트마이닝 기법 활용 생육 및 수량 관련 문헌 분석)

  • Kim, Jin-Hee;Kim, Dae-Jun;Seo, Bo-Hun;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.374-390
    • /
    • 2021
  • Growth and yield of field vegetable crops would be affected by climate conditions, which cause a relatively large fluctuation in crop production and consumer price over years. The yield prediction system for these crops would support decision-making on policies to manage supply and demands. The objectives of this study were to compile literatures related to onion and garlic and to perform data-mining analysis, which would shed lights on the development of crop models for these major field vegetable crops in Korea. The literatures on crop growth and yield were collected from the databases operated by Research Information Sharing Service, National Science & Technology Information Service and SCOPUS. The keywords were chosen to retrieve research outcomes related to crop growth and yield of onion and garlic. These literatures were analyzed using text mining approaches including word cloud and semantic networks. It was found that the number of publications was considerably less for the field vegetable crops compared with rice. Still, specific patterns between previous research outcomes were identified using the text mining methods. For example, climate change and remote sensing were major topics of interest for growth and yield of onion and garlic. The impact of temperature and irrigation on crop growth was also assessed in the previous studies. It was also found that yield of onion and garlic would be affected by both environment and crop management conditions including sowing time, variety, seed treatment method, irrigation interval, fertilization amount and fertilizer composition. For meteorological conditions, temperature, precipitation, solar radiation and humidity were found to be the major factors in the literatures. These indicate that crop models need to take into account both environmental and crop management practices for reliable prediction of crop yield.

The prediction of the stock price movement after IPO using machine learning and text analysis based on TF-IDF (증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용한 공모주의 상장 이후 주가 등락 예측)

  • Yang, Suyeon;Lee, Chaerok;Won, Jonggwan;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.237-262
    • /
    • 2022
  • There has been a growing interest in IPOs (Initial Public Offerings) due to the profitable returns that IPO stocks can offer to investors. However, IPOs can be speculative investments that may involve substantial risk as well because shares tend to be volatile, and the supply of IPO shares is often highly limited. Therefore, it is crucially important that IPO investors are well informed of the issuing firms and the market before deciding whether to invest or not. Unlike institutional investors, individual investors are at a disadvantage since there are few opportunities for individuals to obtain information on the IPOs. In this regard, the purpose of this study is to provide individual investors with the information they may consider when making an IPO investment decision. This study presents a model that uses machine learning and text analysis to predict whether an IPO stock price would move up or down after the first 5 trading days. Our sample includes 691 Korean IPOs from June 2009 to December 2020. The input variables for the prediction are three tone variables created from IPO prospectuses and quantitative variables that are either firm-specific, issue-specific, or market-specific. The three prospectus tone variables indicate the percentage of positive, neutral, and negative sentences in a prospectus, respectively. We considered only the sentences in the Risk Factors section of a prospectus for the tone analysis in this study. All sentences were classified into 'positive', 'neutral', and 'negative' via text analysis using TF-IDF (Term Frequency - Inverse Document Frequency). Measuring the tone of each sentence was conducted by machine learning instead of a lexicon-based approach due to the lack of sentiment dictionaries suitable for Korean text analysis in the context of finance. For this reason, the training set was created by randomly selecting 10% of the sentences from each prospectus, and the sentence classification task on the training set was performed after reading each sentence in person. Then, based on the training set, a Support Vector Machine model was utilized to predict the tone of sentences in the test set. Finally, the machine learning model calculated the percentages of positive, neutral, and negative sentences in each prospectus. To predict the price movement of an IPO stock, four different machine learning techniques were applied: Logistic Regression, Random Forest, Support Vector Machine, and Artificial Neural Network. According to the results, models that use quantitative variables using technical analysis and prospectus tone variables together show higher accuracy than models that use only quantitative variables. More specifically, the prediction accuracy was improved by 1.45% points in the Random Forest model, 4.34% points in the Artificial Neural Network model, and 5.07% points in the Support Vector Machine model. After testing the performance of these machine learning techniques, the Artificial Neural Network model using both quantitative variables and prospectus tone variables was the model with the highest prediction accuracy rate, which was 61.59%. The results indicate that the tone of a prospectus is a significant factor in predicting the price movement of an IPO stock. In addition, the McNemar test was used to verify the statistically significant difference between the models. The model using only quantitative variables and the model using both the quantitative variables and the prospectus tone variables were compared, and it was confirmed that the predictive performance improved significantly at a 1% significance level.

Analysis of Rice Blast Outbreaks in Korea through Text Mining (텍스트 마이닝을 통한 우리나라의 벼 도열병 발생 개황 분석)

  • Song, Sungmin;Chung, Hyunjung;Kim, Kwang-Hyung;Kim, Ki-Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.113-121
    • /
    • 2022
  • Rice blast is a major plant disease that occurs worldwide and significantly reduces rice yields. Rice blast disease occurs periodically in Korea, causing significant socio-economic damage due to the unique status of rice as a major staple crop. A disease outbreak prediction system is required for preventing rice blast disease. Epidemiological investigations of disease outbreaks can aid in decision-making for plant disease management. Currently, plant disease prediction and epidemiological investigations are mainly based on quantitatively measurable, structured data such as crop growth and damage, weather, and other environmental factors. On the other hand, text data related to the occurrence of plant diseases are accumulated along with the structured data. However, epidemiological investigations using these unstructured data have not been conducted. The useful information extracted using unstructured data can be used for more effective plant disease management. This study analyzed news articles related to the rice blast disease through text mining to investigate the years and provinces where rice blast disease occurred most in Korea. Moreover, the average temperature, total precipitation, sunshine hours, and supplied rice varieties in the regions were also analyzed. Through these data, it was estimated that the primary causes of the nationwide outbreak in 2020 and the major outbreak in Jeonbuk region in 2021 were meteorological factors. These results obtained through text mining can be combined with deep learning technology to be used as a tool to investigate the epidemiology of rice blast disease in the future.

A study on improving the accuracy of machine learning models through the use of non-financial information in predicting the Closure of operator using electronic payment service (전자결제서비스 이용 사업자 폐업 예측에서 비재무정보 활용을 통한 머신러닝 모델의 정확도 향상에 관한 연구)

  • Hyunjeong Gong;Eugene Hwang;Sunghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.361-381
    • /
    • 2023
  • Research on corporate bankruptcy prediction has been focused on financial information. Since the company's financial information is updated quarterly, there is a problem that timeliness is insufficient in predicting the possibility of a company's business closure in real time. Evaluated companies that want to improve this need a method of judging the soundness of a company that uses information other than financial information to judge the soundness of a target company. To this end, as information technology has made it easier to collect non-financial information about companies, research has been conducted to apply additional variables and various methodologies other than financial information to predict corporate bankruptcy. It has become an important research task to determine whether it has an effect. In this study, we examined the impact of electronic payment-related information, which constitutes non-financial information, when predicting the closure of business operators using electronic payment service and examined the difference in closure prediction accuracy according to the combination of financial and non-financial information. Specifically, three research models consisting of a financial information model, a non-financial information model, and a combined model were designed, and the closure prediction accuracy was confirmed with six algorithms including the Multi Layer Perceptron (MLP) algorithm. The model combining financial and non-financial information showed the highest prediction accuracy, followed by the non-financial information model and the financial information model in order. As for the prediction accuracy of business closure by algorithm, XGBoost showed the highest prediction accuracy among the six algorithms. As a result of examining the relative importance of a total of 87 variables used to predict business closure, it was confirmed that more than 70% of the top 20 variables that had a significant impact on the prediction of business closure were non-financial information. Through this, it was confirmed that electronic payment-related information of non-financial information is an important variable in predicting business closure, and the possibility of using non-financial information as an alternative to financial information was also examined. Based on this study, the importance of collecting and utilizing non-financial information as information that can predict business closure is recognized, and a plan to utilize it for corporate decision-making is also proposed.

A Study on Human Rights in North Korea in terms of Haewon-sangsaeng (해원상생 관점에서의 북한인권문제 고찰)

  • Kim Young-jin
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.43
    • /
    • pp.67-102
    • /
    • 2022
  • The purpose of this study is to analyze the human rights found in the North Korean Constitution and their core problem by focusing on elements of human rights suggested by Daesoon Jinrihoe's doctrine of Haewon-sangsaeng (解冤相生 the Resolution of Grievances for Mutual Beneficence). Haewon-sangsaeng is seemingly the only natural law that could resolve human resentment lingering from the Mutual Contention of the Former World while leading humans work for the betterment of one another. Haewon-sangsaeng, as a natural law, includes the right to life, the right to autonomous decision-making, and duty to act according to human dignity (physical freedom, the freedom of conscience, freedom of religion, freedom of speech, freedom of press, etc.), the right to equal treatment in one's social environment, and the right to ensure the highest level of health through treatment. The North Korean Constitution does not have a character as an institutional device to guarantee natural human rights, the fundamental principle of the Constitution, and stipulates the right of revolutionary warriors to defend dictators and dictatorships. The right to life is specified so that an individual's life belongs to the life of the group according to their socio-political theory of life. Rights to freedom are stipulated to prioritize group interests over individual interests in accordance with the principle of collectivism. The right to equality and the right to health justify discrimination through class discrimination. The right to life provided to North Koreans is not guaranteed due to the death penalty system found within the North Korean Criminal Code and the Criminal Code Supplementary Provisions. The North Korean regime deprives North Koreans of their right to die with dignity through public executions. The North Korean regime places due process under the direction of the Korea Worker's Party, recognizes religion as superstition or opium, and the Korea Worker's Party acknowledge the freedoms of bodily autonomy, religion, media, or press. North Koreans are classified according to their status, and their rights to equality are not guaranteed because they are forced to live a pre-modern lifestyle according to the patriarchal order. In addition, health rights are not guaranteed due biased availability selection and accessibility in the medical field as well as the frequent shortages of free treatments.

The Effect of Consumers' Value Motives on the Perception of Blog Reviews Credibility: the Moderation Effect of Tie Strength (소비자의 가치 추구 동인이 블로그 리뷰의 신뢰성 지각에 미치는 영향: 유대강도에 따른 조절효과를 중심으로)

  • Chu, Wujin;Roh, Min Jung
    • Asia Marketing Journal
    • /
    • v.13 no.4
    • /
    • pp.159-189
    • /
    • 2012
  • What attracts consumers to bloggers' reviews? Consumers would be attracted both by the Bloggers' expertise (i.e., knowledge and experience) and by his/her unbiased manner of delivering information. Expertise and trustworthiness are both virtues of information sources, particularly when there is uncertainty in decision-making. Noting this point, we postulate that consumers' motives determine the relative weights they place on expertise and trustworthiness. In addition, our hypotheses assume that tie strength moderates consumers' expectation on bloggers' expertise and trustworthiness: with expectation on expertise enhanced for power-blog user-group (weak-ties), and an expectation on trustworthiness elevated for personal-blog user-group (strong-ties). Finally, we theorize that the effect of credibility on willingness to accept a review is moderated by tie strength; the predictive power of credibility is more prominent for the personal-blog user-groups than for the power-blog user groups. To support these assumptions, we conducted a field survey with blog users, collecting retrospective self-report data. The "gourmet shop" was chosen as a target product category, and obtained data analyzed by structural equations modeling. Findings from these data provide empirical support for our theoretical predictions. First, we found that the purposive motive aimed at satisfying instrumental information needs increases reliance on bloggers' expertise, but interpersonal connectivity value for alleviating loneliness elevates reliance on bloggers' trustworthiness. Second, expertise-based credibility is more prominent for power-blog user-groups than for personal-blog user-groups. While strong ties attract consumers with trustworthiness based on close emotional bonds, weak ties gain consumers' attention with new, non-redundant information (Levin & Cross, 2004). Thus, when the existing knowledge system, used in strong ties, does not work as smoothly for addressing an impending problem, the weak-tie source can be utilized as a handy reference. Thus, we can anticipate that power bloggers secure credibility by virtue of their expertise while personal bloggers trade off on their trustworthiness. Our analysis demonstrates that power bloggers appeal more strongly to consumers than do personal bloggers in the area of expertise-based credibility. Finally, the effect of review credibility on willingness to accept a review is higher for the personal-blog user-group than for the power-blog user-group. Actually, the inference that review credibility is a potent predictor of assessing willingness to accept a review is grounded on the analogy that attitude is an effective indicator of purchase intention. However, if memory about established attitudes is blocked, the predictive power of attitude on purchase intention is considerably diminished. Likewise, the effect of credibility on willingness to accept a review can be affected by certain moderators. Inspired by this analogy, we introduced tie strength as a possible moderator and demonstrated that tie strength moderated the effect of credibility on willingness to accept a review. Previously, Levin and Cross (2004) showed that credibility mediates strong-ties through receipt of knowledge, but this credibility mediation is not observed for weak-ties, where a direct path to it is activated. Thus, the predictive power of credibility on behavioral intention - that is, willingness to accept a review - is expected to be higher for strong-ties.

  • PDF

The Case Study on Industry-Leading Marketing of Woori Investment and Securities (우리투자증권의 시장선도 마케팅 사례연구)

  • Choi, Eun-Jung;Lee, Sung-Ho;Lee, Sanghyun;Lee, Doo-Hee
    • Asia Marketing Journal
    • /
    • v.13 no.4
    • /
    • pp.227-251
    • /
    • 2012
  • This study analyzed Woori Investment and Securities' industry-leading marketing from both a brand management and a marketing decision-making perspective. By executing a different marketing strategy from its competitors, Woori Investment and Securities recognized recent changes in the asset management and investment markets as an open opportunity, and quickly responded to the market changes. First, the company launched the octo brand as a multi-account product, two years before its competitors offered their own products. In particular, it created a differentiated brand image, using the blue octopus character, which became familiar to the general financial community, and was consistently employed as part of an integrated marketing communications strategy. Second, it executed a brand expansion strategy by sub-branding octo in a variety of new financial products, responding to rapid changes in the domestic financial and asset management markets. Through this strategic evolution, the octo brand became a successful wealth management brand and representative of Woori Investment & Securities. Third, it has converged market research, demand and trend analysis, and customer needs acquired through various customer contact channels into a marketing perspective. Thus, marketing has participated in the product development stage, a rarity in the finance industry. Woori Investment and Securities has a leading marketing system. The heart of the successful product creation lies in a collaboration of their customer bases among the finance companies in the Woori Financial Group. The present study suggested a corresponding strategy for octo brand, which is expected to enter into the maturity stage of its product life cycle. In addition, this study found a need to modify the current positioning strategy in order to position and preserve sustainability in the increasingly competitive asset management market. It also suggested the need for an offensive strategy to counter the number one M/S company, and address the issue of cannibalism in the Woori Financial Group.

  • PDF

The study of heavy rain warning in Gangwon State using threshold rainfall (침수유발 강우량을 이용한 강원특별자치도 호우특보 기준에 관한 연구)

  • Lee, Hyeonjia;Kang, Donghob;Lee, Iksangc;Kim, Byungsikd
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.751-764
    • /
    • 2023
  • Gangwon State is centered on the Taebaek Mountains with very different climate characteristics depending on the region, and localized heavy rainfall is a frequent occurrence. Heavy rain disasters have a short duration and high spatial and temporal variability, causing many casualties and property damage. In the last 10 years (2012~2021), the number of heavy rain disasters in Gangwon State was 28, with an average cost of 45.6 billion won. To reduce heavy rain disasters, it is necessary to establish a disaster management plan at the local level. In particular, the current criteria for heavy rain warnings are uniform and do not consider local characteristics. Therefore, this study aims to propose a heavy rainfall warning criteria that considers the threshold rainfall for the advisory areas located in Gangwon State. As a result of analyzing the representative value of threshold rainfall by advisory area, the Mean value was similar to the criteria for issuing a heavy rain warning, and it was selected as the criteria for a heavy rain warning in this study. The rainfall events of Typhoon Mitag in 2019, Typhoons Maysak and Haishen in 2020, and Typhoon Khanun in 2023 were applied as rainfall events to review the criteria for heavy rainfall warnings, as a result of Hit Rate accuracy verification, this study reflects the actual warning well with 72% in Gangneung Plain and 98% in Wonju. The criteria for heavy rain warnings in this study are the same as the crisis warning stages (Attention, Caution, Alert, and Danger), which are considered to be possible for preemptive rain disaster response. The results of this study are expected to complement the uniform decision-making system for responding to heavy rain disasters in the future and can be used as a basis for heavy rain warnings that consider disaster risk by region.