• Title/Summary/Keyword: Decision Tree Regression

Search Result 328, Processing Time 0.024 seconds

Pruning the Boosting Ensemble of Decision Trees

  • Yoon, Young-Joo;Song, Moon-Sup
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.449-466
    • /
    • 2006
  • We propose to use variable selection methods based on penalized regression for pruning decision tree ensembles. Pruning methods based on LASSO and SCAD are compared with the cluster pruning method. Comparative studies are performed on some artificial datasets and real datasets. According to the results of comparative studies, the proposed methods based on penalized regression reduce the size of boosting ensembles without decreasing accuracy significantly and have better performance than the cluster pruning method. In terms of classification noise, the proposed pruning methods can mitigate the weakness of AdaBoost to some degree.

Mesh Stiffness Prediction Models for Aircraft Power Train Systems Using Machine Learning Ensemble (머신러닝 앙상블을 사용한 항공기 동력 전달 체계의 물림 강성 예측 모델)

  • Yeonjoon Kang;Yeonhi Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.5
    • /
    • pp.1-14
    • /
    • 2024
  • This paper aimed to develop mesh stiffness prediction models using spur gear design parameters as input variables through a machine learning ensemble method. A dataset was generated by calculating individual stiffness using a calculation method presented in previous studies and deriving the minimum and maximum values of total mesh stiffness. Using multivariate linear regression, support vector regression, and decision tree regression, models were created to predict the minimum and maximum values of mesh stiffness. The stacking ensemble method was used to create meta models. Prediction models of three algorithms were used as base models. These Ensemble meta models were verified with specifications of gears used in actual aircraft engine starters, showing very high prediction performances. Thus, feasibility of applying Ensemble meta models to an actual gear system and their effectiveness were confirmed.

A study on the behavior of cosmetic customers (화장품구매 자료를 통한 고객 구매행태 분석)

  • Cho, Dae-Hyeon;Kim, Byung-Soo;Seok, Kyung-Ha;Lee, Jong-Un;Kim, Jong-Sung;Kim, Sun-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.615-627
    • /
    • 2009
  • In micro marketing promotion, it is important to know the behavior of customers. In this study we are interested in the forecasting of repurchase of customers from customers' behavior. By analyzing the cosmetic transaction data we derive some variables which play an important role in the knowledge of the customers' behavior and in the modeling of repurchase. As modeling tools we use the decision tree, logistic regression and neural network model. Finally we decide to use the decision tree as a final model since it yields the smallest RASE (root average squared error) and the greatest correct classification rate.

  • PDF

Self Introduction Essay Classification Using Doc2Vec for Efficient Job Matching (Doc2Vec 모형에 기반한 자기소개서 분류 모형 구축 및 실험)

  • Kim, Young Soo;Moon, Hyun Sil;Kim, Jae Kyeong
    • Journal of Information Technology Services
    • /
    • v.19 no.1
    • /
    • pp.103-112
    • /
    • 2020
  • Job seekers are making various efforts to find a good company and companies attempt to recruit good people. Job search activities through self-introduction essay are nowadays one of the most active processes. Companies spend time and cost to reviewing all of the numerous self-introduction essays of job seekers. Job seekers are also worried about the possibility of acceptance of their self-introduction essays by companies. This research builds a classification model and conducted an experiments to classify self-introduction essays into pass or fail using deep learning and decision tree techniques. Real world data were classified using stratified sampling to alleviate the data imbalance problem between passed self-introduction essays and failed essays. Documents were embedded using Doc2Vec method developed from existing Word2Vec, and they were classified using logistic regression analysis. The decision tree model was chosen as a benchmark model, and K-fold cross-validation was conducted for the performance evaluation. As a result of several experiments, the area under curve (AUC) value of PV-DM results better than that of other models of Doc2Vec, i.e., PV-DBOW and Concatenate. Furthmore PV-DM classifies passed essays as well as failed essays, while PV_DBOW can not classify passed essays even though it classifies well failed essays. In addition, the classification performance of the logistic regression model embedded using the PV-DM model is better than the decision tree-based classification model. The implication of the experimental results is that company can reduce the cost of recruiting good d job seekers. In addition, our suggested model can help job candidates for pre-evaluating their self-introduction essays.

Comparisons of the Accuracy of Classification Methods in Sasang Constitution Diagnosis with Pulse Waves (맥파를 이용한 사상체질의 진단에 있어서 분류방법에 따른 진단의 정확도 비교)

  • Shin, Sang-Hoon;Kim, Jong-Yeol
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.249-257
    • /
    • 2009
  • The purpose of this study is to find a classification method with high accuracy in regard with sasang constitutional diagnosis. The BMI, blood pressure, pulse wave, and Sasang constitution diagnosed by a specialist was collected from 2848 subjects who were apparently healthy. Through a selective procedure, the data of 1635 subjects was used in the analysis. The results with the classification methods such as the discriminant analysis, regression, decision tree and neural network were compared with the diagnosis of a Sasang constitutional specialist. In result, the discriminant analysis method was hard to qualify the assumption of the equality of covariance matrices within constitutional groups. Moreover, without BMI, the decision tree and neural network methods were very sensitive to the change of the analysis data. Therefore, the Logistic regression and the decision tree is recommended on condition that the decisive factors of constitution are well concerned.

Effects of Smartphone Usage on Walking Speed using Machine Learning Method (기계학습을 이용한 스마트폰 이용이 보행속도에 미치는 영향 분석)

  • Jin, Hye ryun;Do, Myung sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.93-103
    • /
    • 2019
  • This study analyzed the impact of smartphone usage on walking speed during walking on two pedestrian walkways in Daejeon Metropolitan City. For the analysis, the video data about the actual use of smartphone was acquired and the walking speed was calculated based on the walking density of the pedestrian Level Of Service(LOS) presented in the Road Capacity Manual. Multiple regression analysis and decision tree using machine learning were used to analyze the impact of smartphone usage on walking speed, and as the explanatory variables, gender, disable smartphone, use of smartphone using auditory function, use of smartphone using visual function, LOS A, LOS B, LOS C were adopted. The result showed that LOS C had the highest impact on walking speed change and the women's group using their visual function was founded to have the slowest walking speed in LOS C. In particular, the author found that walking speed significantly decreased in the case of use of visual function rather than listening to music or the hearing on the phone.

A Study on Predictive Modeling of I-131 Radioactivity Based on Machine Learning (머신러닝 기반 고용량 I-131의 용량 예측 모델에 관한 연구)

  • Yeon-Wook You;Chung-Wun Lee;Jung-Soo Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.131-139
    • /
    • 2023
  • High-dose I-131 used for the treatment of thyroid cancer causes localized exposure among radiology technologists handling it. There is a delay between the calibration date and when the dose of I-131 is administered to a patient. Therefore, it is necessary to directly measure the radioactivity of the administered dose using a dose calibrator. In this study, we attempted to apply machine learning modeling to measured external dose rates from shielded I-131 in order to predict their radioactivity. External dose rates were measured at 1 m, 0.3 m, and 0.1 m distances from a shielded container with the I-131, with a total of 868 sets of measurements taken. For the modeling process, we utilized the hold-out method to partition the data with a 7:3 ratio (609 for the training set:259 for the test set). For the machine learning algorithms, we chose linear regression, decision tree, random forest and XGBoost. To evaluate the models, we calculated root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) to evaluate accuracy and R2 to evaluate explanatory power. Evaluation results are as follows. Linear regression (RMSE 268.15, MSE 71901.87, MAE 231.68, R2 0.92), decision tree (RMSE 108.89, MSE 11856.92, MAE 19.24, R2 0.99), random forest (RMSE 8.89, MSE 79.10, MAE 6.55, R2 0.99), XGBoost (RMSE 10.21, MSE 104.22, MAE 7.68, R2 0.99). The random forest model achieved the highest predictive ability. Improving the model's performance in the future is expected to contribute to lowering exposure among radiology technologists.

Interesting Node Finding Criteria for Regression Trees (회귀의사결정나무에서의 관심노드 찾는 분류 기준법)

  • 이영섭
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • One of decision tree method is regression trees which are used to predict a continuous response. The general splitting criteria in tree growing are based on a compromise in the impurity between the left and the right child node. By picking or the more interesting subsets and ignoring the other, the proposed new splitting criteria in this paper do not split based on a compromise of child nodes anymore. The tree structure by the new criteria might be unbalanced but plausible. It can find a interesting subset as early as possible and express it by a simple clause. As a result, it is very interpretable by sacrificing a little bit of accuracy.

A Study of Analyzing Realtime Strategy Game Data using Data Mining (Data Mining을 이용한 전략시뮬레이션 게임 데이터 분석)

  • Yong, Hye-Ryeon;Kim, Do-Jin;Hwang, Hyun-Seok
    • Journal of Korea Game Society
    • /
    • v.15 no.4
    • /
    • pp.59-68
    • /
    • 2015
  • The progress in Information & Communication Technology enables data scientists to analyze big data for identifying peoples' daily lives and tacit preferences. A variety of industries already aware the potential usefulness of analyzing big data. However limited use of big data has been performed in game industry. In this research, we adopt data mining technique to analyze data gathered from a strategic simulation game. Decision Tree, Random Forest, Multi-class SVM, and Linear Regression techniques are used to find the most important variables to users' game levels. We provide practical guides for game design and usability based on the analyzed results.