• Title/Summary/Keyword: Decision Tree Regression

Search Result 328, Processing Time 0.027 seconds

A Study on the Prediction of Mortality Rate after Lung Cancer Diagnosis for Men and Women in 80s, 90s, and 100s Based on Deep Learning (딥러닝 기반 80대·90대·100대 남녀 대상 폐암 진단 후 사망률 예측에 관한 연구)

  • Kyung-Keun Byun;Doeg-Gyu Lee;Se-Young Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.87-96
    • /
    • 2023
  • Recently, research on predicting the treatment results of diseases using deep learning technology is also active in the medical community. However, small patient data and specific deep learning algorithms were selected and utilized, and research was conducted to show meaningful results under specific conditions. In this study, in order to generalize the research results, patients were further expanded and subdivided to derive the results of a study predicting mortality after lung cancer diagnosis for men and women in their 80s, 90s, and 100s. Using AutoML, which provides large-scale medical information and various deep learning algorithms from the Health Insurance Review and Assessment Service, five algorithms such as Decision Tree, Random Forest, Gradient Boosting, XGBoost, and Logistic Registration were created to predict mortality rates for 84 months after lung cancer diagnosis. As a result of the study, men in their 80s and 90s had a higher mortality prediction rate than women, and women in their 100s had a higher mortality prediction rate than men. And the factor that has the greatest influence on the mortality rate was analyzed as the treatment period.

Matching prediction on Korean professional volleyball league (한국 프로배구 연맹의 경기 예측 및 영향요인 분석)

  • Heesook Kim;Nakyung Lee;Jiyoon Lee;Jongwoo Song
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.3
    • /
    • pp.323-338
    • /
    • 2024
  • This study analyzes the Korean professional volleyball league and predict match outcomes using popular machine learning classification methods. Match data from the 2012/2013 to 2022/2023 seasons for both male and female leagues were collected, including match details. Two different data structures were applied to the models: Separating matches results into two teams and performance differentials between the home and away teams. These two data structures were applied to construct a total of four predictive models, encompassing both male and female leagues. As specific variable values used in the models are unavailable before the end of matches, the results of the most recent 3 to 4 matches, up until just before today's match, were preprocessed and utilized as variables. Logistc Regrssion, Decision Tree, Bagging, Random Forest, Xgboost, Adaboost, and Light GBM, were employed for classification, and the model employing Random Forest showed the highest predictive performance. The results indicated that while significant variables varied by gender and data structure, set success rate, blocking points scored, and the number of faults were consistently crucial. Notably, our win-loss prediction model's distinctiveness lies in its ability to provide pre-match forecasts rather than post-event predictions.

Analysis of Survivability for Combatants during Offensive Operations at the Tactical Level (전술제대 공격작전간 전투원 생존성에 관한 연구)

  • Kim, Jaeoh;Cho, HyungJun;Kim, GakGyu
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.921-932
    • /
    • 2015
  • This study analyzed military personnel survivability in regards to offensive operations according to the scientific military training data of a reinforced infantry battalion. Scientific battle training was conducted at the Korea Combat Training Center (KCTC) training facility and utilized scientific military training equipment that included MILES and the main exercise control system. The training audience freely engaged an OPFOR who is an expert at tactics and weapon systems. It provides a statistical analysis of data in regards to state-of-the-art military training because the scientific battle training system saves and utilizes all training zone data for analysis and after action review as well as offers training control during the training period. The methodologies used the Cox PH modeling (which does not require parametric distribution assumptions) and decision tree modeling for survival data such as CART, GUIDE, and CTREE for richer and easier interpretation. The variables that violate the PH assumption were stratified and analyzed. Since the Cox PH model result was not easy to interpret the period of service, additional interpretation was attempted through univariate local regression. CART, GUIDE, and CTREE formed different tree models which allow for various interpretations.

Monetary policy synchronization of Korea and United States reflected in the statements (통화정책 결정문에 나타난 한미 통화정책 동조화 현상 분석)

  • Chang, Youngjae
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.115-126
    • /
    • 2021
  • Central banks communicate with the market through a statement on the direction of monetary policy while implementing monetary policy. The rapid contraction of the global economy due to the recent Covid-19 pandemic could be compared to the crisis situation during the 2008 global financial crisis. In this paper, we analyzed the text data from the monetary policy statements of the Bank of Korea and Fed reflecting monetary policy directions focusing on how they were affected in the face of a global crisis. For analysis, we collected the text data of the two countries' monetary policy direction reports published from October 1999 to September 2020. We examined the semantic features using word cloud and word embedding, and analyzed the trend of the similarity between two countries' documents through a piecewise regression tree model. The visualization result shows that both the Bank of Korea and the US Fed have published the statements with refined words of clear meaning for transparent and effective communication with the market. The analysis of the dissimilarity trend of documents in both countries also shows that there exists a sense of synchronization between them as the rapid changes in the global economic environment affect monetary policy.

Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection (머신러닝 기반 금속외관 결함 검출 비교 분석)

  • Lee, Se-Hun;Kang, Seong-Hwan;Shin, Yo-Seob;Choi, Oh-Kyu;Kim, Sijong;Kang, Jae-Mo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.834-841
    • /
    • 2022
  • Recently, applying artificial intelligence technologies in various fields of production has drawn an upsurge of research interest due to the increase for smart factory and artificial intelligence technologies. A great deal of effort is being made to introduce artificial intelligence algorithms into the defect detection task. Particularly, detection of defects on the surface of metal has a higher level of research interest compared to other materials (wood, plastics, fibers, etc.). In this paper, we compare and analyze the speed and performance of defect classification by combining machine learning techniques (Support Vector Machine, Softmax Regression, Decision Tree) with dimensionality reduction algorithms (Principal Component Analysis, AutoEncoders) and two convolutional neural networks (proposed method, ResNet). To validate and compare the performance and speed of the algorithms, we have adopted two datasets ((i) public dataset, (ii) actual dataset), and on the basis of the results, the most efficient algorithm is determined.

Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method (기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가)

  • Yoon, Seok;Bang, Hyun-Tae;Kim, Geon-Young;Jeon, Haemin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • The buffer is a key component of an engineered barrier system that safeguards the disposal of high-level radioactive waste. Buffers are located between disposal canisters and host rock, and they can restrain the release of radionuclides and protect canisters from the inflow of ground water. Since considerable heat is released from a disposal canister to the surrounding buffer, the thermal conductivity of the buffer is a very important parameter in the entire disposal safety. For this reason, a lot of research has been conducted on thermal conductivity prediction models that consider various factors. In this study, the thermal conductivity of a buffer is estimated using the machine learning methods of: linear regression, decision tree, support vector machine (SVM), ensemble, Gaussian process regression (GPR), neural network, deep belief network, and genetic programming. In the results, the machine learning methods such as ensemble, genetic programming, SVM with cubic parameter, and GPR showed better performance compared with the regression model, with the ensemble with XGBoost and Gaussian process regression models showing best performance.

Analysis of Utilization Characteristics, Health Behaviors and Health Management Level of Participants in Private Health Examination in a General Hospital (일개 종합병원의 민간 건강검진 수검자의 검진이용 특성, 건강행태 및 건강관리 수준 분석)

  • Kim, Yoo-Mi;Park, Jong-Ho;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.301-311
    • /
    • 2013
  • This study aims to analyze characteristics, health behaviors and health management level related to private health examination recipients in one general hospital. To achieve this, we analyzed 150,501 cases of private health examination data for 11 years from 2001 to 2011 for 20,696 participants in 2011 in a Dae-Jeon general hospital health examination center. The cluster analysis for classify private health examination group is used z-score standardization of K-means clustering method. The logistic regression analysis, decision tree and neural network analysis are used to periodic/non-periodic private health examination classification model. 1,000 people were selected as a customer management business group that has high probability to be non-periodic private health examination patients in new private health examination. According to results of this study, private health examination group was categorized by new, periodic and non-periodic group. New participants in private health examination were more 30~39 years old person than other age groups and more patients suspected of having renal disease. Periodic participants in private health examination were more male participants and more patients suspected of having hyperlipidemia. Non-periodic participants in private health examination were more smoking and sitting person and more patients suspected of having anemia and diabetes mellitus. As a result of decision tree, variables related to non-periodic participants in private health examination were sex, age, residence, exercise, anemia, hyperlipidemia, diabetes mellitus, obesity and liver disease. In particular, 71.4% of non-periodic participants were female, non-anemic, non-exercise, and suspicious obesity person. To operation of customized customer management business for private health examination will contribute to efficiency in health examination center.

A Study on Empirical Model for the Prevention and Protection of Technology Leakage through SME Profiling Analysis (중소기업 프로파일링 분석을 통한 기술유출 방지 및 보호 모형 연구)

  • Yoo, In-Jin;Park, Do-Hyung
    • The Journal of Information Systems
    • /
    • v.27 no.1
    • /
    • pp.171-191
    • /
    • 2018
  • Purpose Corporate technology leakage is not only monetary loss, but also has a negative impact on the corporate image and further deteriorates sustainable growth. In particular, since SMEs are highly dependent on core technologies compared to large corporations, loss of technology leakage threatens corporate survival. Therefore, it is important for SMEs to "prevent and protect technology leakage". With the recent development of data analysis technology and the opening of public data, it has become possible to discover and proactively detect companies with a high probability of technology leakage based on actual company data. In this study, we try to construct profiles of enterprises with and without technology leakage experience through profiling analysis using data mining techniques. Furthermore, based on this, we propose a classification model that distinguishes companies that are likely to leak technology. Design/methodology/approach This study tries to develop the empirical model for prevention and protection of technology leakage through profiling method which analyzes each SME from the viewpoint of individual. Based on the previous research, we tried to classify many characteristics of SMEs into six categories and to identify the factors influencing the technology leakage of SMEs from the enterprise point of view. Specifically, we divided the 29 SME characteristics into the following six categories: 'firm characteristics', 'organizational characteristics', 'technical characteristics', 'relational characteristics', 'financial characteristics', and 'enterprise core competencies'. Each characteristic was extracted from the questionnaire data of 'Survey of Small and Medium Enterprises Technology' carried out annually by the Government of the Republic of Korea. Since the number of SMEs with experience of technology leakage in questionnaire data was significantly smaller than the other, we made a 1: 1 correspondence with each sample through mixed sampling. We conducted profiling of companies with and without technology leakage experience using decision-tree technique for research data, and derived meaningful variables that can distinguish the two. Then, empirical model for prevention and protection of technology leakage was developed through discriminant analysis and logistic regression analysis. Findings Profiling analysis shows that technology novelty, enterprise technology group, number of intellectual property registrations, product life cycle, technology development infrastructure level(absence of dedicated organization), enterprise core competency(design) and enterprise core competency(process design) help us find SME's technology leakage. We developed the two empirical model for prevention and protection of technology leakage in SMEs using discriminant analysis and logistic regression analysis, and each hit ratio is 65%(discriminant analysis) and 67%(logistic regression analysis).

A Study on the Development of Readmission Predictive Model (재입원 예측 모형 개발에 관한 연구)

  • Cho, Yun-Jung;Kim, Yoo-Mi;Han, Seung-Woo;Choe, Jun-Yeong;Baek, Seol-Gyeong;Kang, Sung-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.435-447
    • /
    • 2019
  • In order to prevent unnecessary re-admission, it is necessary to intensively manage the groups with high probability of re-admission. For this, it is necessary to develop a re-admission prediction model. Two - year discharge summary data of one university hospital were collected from 2016 to 2017 to develop a predictive model of re-admission. In this case, the re-admitted patients were defined as those who were discharged more than once during the study period. We conducted descriptive statistics and crosstab analysis to identify the characteristics of rehospitalized patients. The re-admission prediction model was developed using logistic regression, neural network, and decision tree. AUC (Area Under Curve) was used for model evaluation. The logistic regression model was selected as the final re-admission predictive model because the AUC was the best at 0.81. The main variables affecting the selected rehospitalization in the logistic regression model were Residental regions, Age, CCS, Charlson Index Score, Discharge Dept., Via ER, LOS, Operation, Sex, Total payment, and Insurance. The model developed in this study was limited to generalization because it was two years data of one hospital. It is necessary to develop a model that can collect and generalize long-term data from various hospitals in the future. Furthermore, it is necessary to develop a model that can predict the re-admission that was not planned.

Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant (정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형)

  • Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1283-1293
    • /
    • 2022
  • The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.