Journal of the Korean Society of Clothing and Textiles
/
v.44
no.6
/
pp.1053-1069
/
2020
This study examined the sales pattern relationship with respect to product attributes to propose sales forecasting for fashion products. We analyzed 537 SKU sales data of T-shirts in the domestic sports brand using SAS program. The sales pattern of fashion products fluctuated and were influenced by exogenous factors; therefore, we removed the influence of exogenous factors found to be price discounts and holiday effects as a result of regression analysis. In addition, it was difficult to predict sales using the sales patterns of the same product since fashion products were released as new products every year. Therefore, the forecasting model was proposed using sales patterns of related product attributes when attributes were considered descriptive variables. We classified sales patterns using K-means clustering in order to explain the relationship between sales patterns and product attributes along with creating a decision tree classifier using attributes as input and sales patterns as output. As a result, the sales patterns of T-shirts were clustered into six types that featured the characteristic shape of peak and slope. It was also associated with the combination of product attributes and their values in regards to the proposed sales pattern prediction model.
Data mining is an interest area in all field around us not in any specific areas, which could be used applications in a number of areas heavily. In other words, it is used in the decision-making process, data and correlation analysis in hidden relations, for finding the actionable information and prediction. But some of the data sets contains many missing values in the variables and do not exist a large number of records in the data set. In this paper, missing values are handled in accordance with the model tree algorithm. Cholesterol value is applied for predicting. For the performance analysis, experiments are approached for each treatment. Through this, efficient alternative is presented to apply the missing data.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.7-8
/
2019
지속적인 건축물의 노화와 개발지 부족은 현존하는 건축물의 재건축 및 활용 가능 용지에 신규 건축행위를 유도한다. 서울에서는 근 5년간 25,000여 건의 신축이 발생하였으며, 이에 대한 신규 정책 등 다양한 지원 체계가 활성화되고 있다. 본 연구에서는 2011년부터 2015년까지 발생한 필지별 건축행위 데이터와 추가적 43개의 변수를 활용하여 신규 건축행위가 발생하는 필지에 대한 예측 모델을 구축하고자 한다. 요인도출 기계학습 방식인 의사결정트리 (Decision Tree) 중 CART(Classification And Regression Tree)를 활용하여 신규 건축 예측 모델을 구축하였으며, 86.28%의 정확도와 4개의 주요 신규 건축행위 발생 요인을 도출하였다.
The major purpose of this study is to evaluate methodologies to predict the injury severity of pedestrian-vehicle collisions. Methodologies to be evaluated and compared in this study include Binary Logistic Regression(BLR), Ordered Probit Model(OPM), Support Vector Machine(SVM) and Decision Tree(DT) method. Valuable insights into applying methodologies to analyze the characteristics of pedestrian injury severity are derived. For the purpose of identifying causal factors affecting the injury severity, statistical approaches such as BLR and OPM are recommended. On the other hand, to achieve better prediction performance, heuristic approaches such as SVM and DT are recommended. It is expected that the outcome of this study would be useful in developing various countermeasures for enhancing pedestrian safety.
Back ground: Nurses now occupy one third of all hospital human resources. Therefore, efficient management of nursing manpower is getting more important. While it is very clear that nursing workload requirement analysis and patient severity classification should be done first for the efficient allocation of nursing workforce, these processes have been conducted manually with ad hoc rule. Purposes: This study was tried to make a predict model for patient classification according to nursing need. We tried to find the easier and faster method to classify nursing patients that can help efficient management of nursing manpower. Methods: The nursing patient classifications data of the hospitalized cancer patients in one of the biggest cancer center in Korea during 2003.1.1-2003.12.31 were assessed by trained nurses. This study developed a prediction model and analyzing nursing needs by data mining techniques. Patients were classified by three different data mining techniques, (Logistic regression, Decision tree and Neural network) and the results were assessed. Results: The data set was created using 165,073 records of 2,228 patients classification database. Main explaining variables were as follows in 3 different data mining techniques. 1) Logistic regression : age, month and section. 2) Decision tree : section, month, age and tumor. 3) Neural network : section, diagnosis, age, sex, metastasis, hospital days and month. Among these three techniques, neural network showed the best prediction power in ROC curve verification. As the result of the patient classification prediction model developed by neural network based on nurse needs, the prediction accuracy was 84.06%. Conclusion: The patient classification prediction model was developed and tested in this study using real patients data. The result can be employed for more accurate calculation of required nursing staff and effective use of labor force.
This study was carried out to make early prediction of carcass yield grade. Sixty six Hanwoo steers were measured for back fat thickness, longissimus muscle area and body weight at 18, 21 and 24 months of age by ultrasound. Carcass evaluation was done after ultrasound measurement at 24 month of age. Ultrasonic yield grade at 18, 21 and 24 month of age were predicted by regression and decision tree methods. Classifying by carcass yield grade, ultrasonic back fat thickness at 18, 21 and 24 months of age was significantly different in each carcass yield grade (p<0.05). The prediction accuracy of carcass yield grade by regression method was 78.8% at 18 months, 86.4% at 21 months and 90.9% at 24 months of age. By using the decision tree method for carcass yield grade, 78.8%, 89.4% and 89.4% of prediction accuracy were obtained at 18, 21 and 24 months of age, respectively.
Journal of the Korean Data and Information Science Society
/
v.22
no.5
/
pp.849-856
/
2011
In this paper, we study the influence analysis of admission and enrollment variables including individual characteristics variables on employment of graduate students at K university. First, logistic regression analysis is used to examine the main effects of admission, enrollment variables including student's individual characteristics on employment. Also, decision tree analysis is used to examine the interaction effects for the variables on employment. The results of this paper may be helpful to K university in designing effective job finding strategies for graduate students.
Journal of the Korean Data and Information Science Society
/
v.23
no.6
/
pp.1137-1144
/
2012
Many universities stress gradually the importance of english-medium class in order to improve the international competitiveness and the internationalization of the university. In this paper, we compare english-medium class with korean class using course evaluation score. Also we analyze the factors that affect the effectiveness of the course evaluation score of english-medium class. First, logistic regression analysis is used to examine the main effects of subjects and individual characteristics. Also, decision tree analysis is used to examine the interaction effects for subjects and individual characteristics. The results of this paper are as follows. Grade, department category, class size, GPA and screening method affect the effectiveness of english-medium class. The highest effectiveness group of english-medium class is that grade is freshmen and department category is humanity. Also the group of the second highest effectiveness group is that grade is freshmen and department category is nature and art and GPA is high.
Journal of the Korean Data and Information Science Society
/
v.26
no.3
/
pp.661-668
/
2015
Them traffic accidents have been increased every year due to increasing of vehicles numbers as well as the gravitation of the population. The carelessness of drivers, many road weather factors have a great influence on the traffic accidents. Especially, the number of traffic accident is governed by precipitation, visibility, humidity, cloud amounts and temperature. The purpose of this paper is to analyse the effect of road weather factors on traffic accident. We use the data of traffic accident, AWS weather factors (precipitation, existence of rainfall, temperature, wind speed), time zone and day of the week in 2013. We did statistical analysis using logistic regression analysis and decision tree analysis. These prediction models may be used to predict the traffic accident according to the weather condition.
If the software is developed to analyze the speech disorder, the application of various converged areas will be very high. This paper implements the user-friendly program based on CART(Classification and regression trees) analysis to distinguish between normal and pathological voices utilizing combination of the acoustical and HOS(Higher-order statistics) parameters. It means convergence between medical information and signal processing. Then the acoustical parameters are Jitter(%) and Shimmer(%). The proposed HOS parameters are means and variances of skewness(MOS and VOS) and kurtosis(MOK and VOK). Database consist of 53 normal and 173 pathological voices distributed by Kay Elemetrics. When the acoustical and proposed parameters together are used to generate the decision tree, the average accuracy is 83.11%. Finally, we developed a program with more user-friendly interface and frameworks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.