• 제목/요약/키워드: Decision Tree(DT)

검색결과 56건 처리시간 0.022초

A Detailed Analysis of Classifier Ensembles for Intrusion Detection in Wireless Network

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1203-1212
    • /
    • 2017
  • Intrusion detection systems (IDSs) are crucial in this overwhelming increase of attacks on the computing infrastructure. It intelligently detects malicious and predicts future attack patterns based on the classification analysis using machine learning and data mining techniques. This paper is devoted to thoroughly evaluate classifier ensembles for IDSs in IEEE 802.11 wireless network. Two ensemble techniques, i.e. voting and stacking are employed to combine the three base classifiers, i.e. decision tree (DT), random forest (RF), and support vector machine (SVM). We use area under ROC curve (AUC) value as a performance metric. Finally, we conduct two statistical significance tests to evaluate the performance differences among classifiers.

SIFT 및 HSV 특징 추출 기반 폐기물 객체 유사도 측정 모델 (The SIFT and HSV feature extraction-based waste Object similarity measurement model)

  • 고준혁 ;최혁순 ;김진아 ;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.1220-1223
    • /
    • 2023
  • 폐기물을 처리하는데 있어 배출과 수거에 대한 프로세스 자동화를 위해 폐기물 객체 유사도 판별이 요구된다. 이를 위해 본 연구에서는 폐기물 데이터셋에서 SIFT(Scale-Invariant Feature Transform)와 HSV(Hue, Saturation, Value)기반으로 두 이미지의 공통된 특징을 추출해 융합하고, 기계학습을 통해 이미지 객체 간의 유사도를 측정하는 모델을 제안한다. 실험을 위해 수집된 폐기물 데이터셋 81,072 장을 활용하여 이미지를 학습시키고, 전통적인 임계치 기반 유사도 측정과 본 논문에서 제시하는 유사도 측정을 비교하여 성능을 확인하였다. 임계치 기반 측정에서 SIFT 와 HSV 는 각각 0.82, 0.89(Acc)가 측정되었고, 본 논문에서 제시한 특징 추출 방법을 사용한 기계학습의 성능은 DT(Decision Tree)와 SVM(Support Vector Machine) 모두 0.93 (Acc)로 4%의 정확도가 향상되었다.

SMOTE와 분류 기법을 활용한 산사태 위험 지역 결정 방법 (Method for Assessing Landslide Susceptibility Using SMOTE and Classification Algorithms)

  • 윤형구
    • 한국지반공학회논문집
    • /
    • 제39권6호
    • /
    • pp.5-12
    • /
    • 2023
  • 산사태 위험 지역을 사전에 조사하여 설정하는 것은 다수의 피해를 줄이기 위해 필요하다. 해당 연구의 목적은 machine learning 기법 중 분류 알고리즘을 활용하여 대상 지반의 안전율 분류를 수행할 수 있는 방법론을 제시하는 것이다. 산사태 위험 지역은 high risk area(HRA) 모델을 적용하였으며, 8개의 지반공학 물성치를 통해 위험 지역을 판단하였다. 분류 알고리즘은 decision tree(DT), K-Nearest Neighbor(KNN), logistic regression(LR) 그리고 random forest(RF)의 4가지가 활용 되었으며, 안전율 1.2~2.0 범위에 8가지 지반공학 물성치의 분류 정확도를 계산하였다. 정확도는 안전율이 1.2~1.7 범위에서 신뢰성 높게 나타났지만, 그 외 범위인 1.8~2.0 사이에서는 상대적으로 낮은 정확도를 보였다. 이를 극복하기 위하여 synthetic minority over-sampling technique(SMOTE) 알고리즘을 적용하여 데이터 개수를 증폭하였으며, 증폭한 데이터를 통해 분류 알고리즘을 적용하면 안전율 1.8~2.0 범위에서 정확도가 평균적으로 약 250% 증가한 것으로 나타났다. 해당 연구 결과는 SMOTE 알고리즘이 데이터 개수를 향상시켜 분류 알고리즘의 정확도가 개선된 것을 보여주며, 타 분야에도 정확도 향상에 적용 가능하다고 판단된다.

기상 데이터를 이용한 데이터 마이닝 기반의 산불 예측 모델 (Data Mining based Forest Fires Prediction Models using Meteorological Data)

  • 김삼근;안재근
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.521-529
    • /
    • 2020
  • 산불은 경제, 자연환경, 건강과 같은 삶의 여러 측면에서 몇 가지 악영향을 주는 가장 핵심적인 환경위험 중의 하나이다. 산불의 조기발견, 빠른 예측, 신속한 대응은 산불 위험으로부터 재산과 생명을 구하는데 본질적인 역할을 할 수 있다. 산불의 빠른 발견을 위해 기상청에서 각 지역에 설치한 로컬 센서를 통해 획득한 기상 데이터를 이용하는 방법이 있다. 기상 조건(예: 온도, 바람)은 산불 발생에 영향을 미친다고 알려져 있다. 본 논문에서는 산불의 피해 면적을 예측하기 위해 데이터 마이닝(DM) 기법을 적용한다. 다섯 종류의 DM 모델, 예를 들어 Stochastic Gradient Descent(SGD), Support Vector Machines(SVM), Decision Tree(DT), Random Forests(RF), Deep Neural Network(DNN)과 네 가지 입력 특성 그룹(공간, 시간, 기상 데이터 이용)을 최근 5년간의 경기도 지역에서 수집한 실제 산불 발생 데이터에 적용하였다. 실험결과는 기상 데이터만을 이용한 DNN 모델이 가장 우수한 성능을 보였다. 제안한 모델은 빈도수가 높은 작은 규모의 산불 예측에 더 효과적이었다. 제안한 예측 모델을 통해 도출된 이러한 지식은 소방 자원 관리를 개선하는데 특히 유용하다.

Hybrid machine learning with HHO method for estimating ultimate shear strength of both rectangular and circular RC columns

  • Quang-Viet Vu;Van-Thanh Pham;Dai-Nhan Le;Zhengyi Kong;George Papazafeiropoulos;Viet-Ngoc Pham
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.145-163
    • /
    • 2024
  • This paper presents six novel hybrid machine learning (ML) models that combine support vector machines (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with the Harris Hawks Optimization (HHO) algorithm. These models, namely HHO-SVM, HHO-DT, HHO-RF, HHO-GB, HHO-XGB, and HHO-CGB, are designed to predict the ultimate strength of both rectangular and circular reinforced concrete (RC) columns. The prediction models are established using a comprehensive database consisting of 325 experimental data for rectangular columns and 172 experimental data for circular columns. The ML model hyperparameters are optimized through a combination of cross-validation technique and the HHO. The performance of the hybrid ML models is evaluated and compared using various metrics, ultimately identifying the HHO-CGB model as the top-performing model for predicting the ultimate shear strength of both rectangular and circular RC columns. The mean R-value and mean a20-index are relatively high, reaching 0.991 and 0.959, respectively, while the mean absolute error and root mean square error are low (10.302 kN and 27.954 kN, respectively). Another comparison is conducted with four existing formulas to further validate the efficiency of the proposed HHO-CGB model. The Shapely Additive Explanations method is applied to analyze the contribution of each variable to the output within the HHO-CGB model, providing insights into the local and global influence of variables. The analysis reveals that the depth of the column, length of the column, and axial loading exert the most significant influence on the ultimate shear strength of RC columns. A user-friendly graphical interface tool is then developed based on the HHO-CGB to facilitate practical and cost-effective usage.

정교한 데이터 분류를 위한 방법론의 고찰 (A Review of the Methodology for Sophisticated Data Classification)

  • 김승재;김성환
    • 통합자연과학논문집
    • /
    • 제14권1호
    • /
    • pp.27-34
    • /
    • 2021
  • 전 세계적으로 인공지능(AI)을 구현하려는 움직임이 많아지고 있다. AI구현에서는 많은 양의 데이터, 목적에 맞는 데이터의 분류 등 데이터의 중요성을 뺄 수 없다. 이러한 데이터를 생성하고 가공하는 기술에는 사물인터넷(IOT)과 빅데이터(Big-data) 분석이 있으며 4차 산업을 이끌어 가는 원동력이라 할 수 있다. 또한 이러한 기술은 국가와 개인 차원에서 많이 활용되고 있으며, 특히나 특정분야에 집결되는 데이터를 기준으로 빅데이터 분석에 활용함으로써 새로운 모델을 발견하고, 그 모델로 새로운 값을 추론하고 예측함으로써 미래비전을 제시하려는 시도가 많아지고 있는 추세이다. 데이터 분석을 통한 결론은 데이터가 가지고 있는 정보의 정확성에 따라 많은 변화를 가져올 수 있으며, 그 변화에 따라 잘못된 결과를 발생시킬 수도 있다. 이렇듯 데이터의 분석은 데이터가 가지는 정보 또는 분석 목적에 맞는 데이터 분류가 매우 중요하다는 것을 알 수 있다. 또한 빅데이터 분석결과 통계량의 신뢰성과 정교함을 얻기 위해서는 각 변수의 의미와 변수들 간의 상관관계, 다중공선성 등을 고려하여 분석해야 한다. 즉, 빅데이터 분석에 앞서 분석목적에 맞도록 데이터의 분류가 잘 이루어지도록 해야 한다. 이에 본 고찰에서는 AI기술을 구현하는 머신러닝(machine learning, ML) 기법에 속하는 분류분석(classification analysis, CA) 중 의사결정트리(decision tree, DT)기법, 랜덤포레스트(random forest, RF)기법, 선형분류분석(linear discriminant analysis, LDA), 이차선형분류분석(quadratic discriminant analysis, QDA)을 이용하여 데이터를 분류한 후 데이터의 분류정도를 평가함으로써 데이터의 분류 분석률 향상을 위한 방안을 모색하려 한다.

Form-finding of lifting self-forming GFRP elastic gridshells based on machine learning interpretability methods

  • Soheila, Kookalani;Sandy, Nyunn;Sheng, Xiang
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.605-618
    • /
    • 2022
  • Glass fiber reinforced polymer (GFRP) elastic gridshells consist of long continuous GFRP tubes that form elastic deformations. In this paper, a method for the form-finding of gridshell structures is presented based on the interpretable machine learning (ML) approaches. A comparative study is conducted on several ML algorithms, including support vector regression (SVR), K-nearest neighbors (KNN), decision tree (DT), random forest (RF), AdaBoost, XGBoost, category boosting (CatBoost), and light gradient boosting machine (LightGBM). A numerical example is presented using a standard double-hump gridshell considering two characteristics of deformation as objective functions. The combination of the grid search approach and k-fold cross-validation (CV) is implemented for fine-tuning the parameters of ML models. The results of the comparative study indicate that the LightGBM model presents the highest prediction accuracy. Finally, interpretable ML approaches, including Shapely additive explanations (SHAP), partial dependence plot (PDP), and accumulated local effects (ALE), are applied to explain the predictions of the ML model since it is essential to understand the effect of various values of input parameters on objective functions. As a result of interpretability approaches, an optimum gridshell structure is obtained and new opportunities are verified for form-finding investigation of GFRP elastic gridshells during lifting construction.

A robust approach in prediction of RCFST columns using machine learning algorithm

  • Van-Thanh Pham;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.153-173
    • /
    • 2023
  • Rectangular concrete-filled steel tubular (RCFST) column, a type of concrete-filled steel tubular (CFST), is widely used in compression members of structures because of its advantages. This paper proposes a robust machine learning-based framework for predicting the ultimate compressive strength of RCFST columns under both concentric and eccentric loading. The gradient boosting neural network (GBNN), an efficient and up-to-date ML algorithm, is utilized for developing a predictive model in the proposed framework. A total of 890 experimental data of RCFST columns, which is categorized into two datasets of concentric and eccentric compression, is carefully collected to serve as training and testing purposes. The accuracy of the proposed model is demonstrated by comparing its performance with seven state-of-the-art machine learning methods including decision tree (DT), random forest (RF), support vector machines (SVM), deep learning (DL), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and categorical gradient boosting (CatBoost). Four available design codes, including the European (EC4), American concrete institute (ACI), American institute of steel construction (AISC), and Australian/New Zealand (AS/NZS) are refereed in another comparison. The results demonstrate that the proposed GBNN method is a robust and powerful approach to obtain the ultimate strength of RCFST columns.

A novel method for vehicle load detection in cable-stayed bridge using graph neural network

  • Van-Thanh Pham;Hye-Sook Son;Cheol-Ho Kim;Yun Jang;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.731-744
    • /
    • 2023
  • Vehicle load information is an important role in operating and ensuring the structural health of cable-stayed bridges. In this regard, an efficient and economic method is proposed for vehicle load detection based on the observed cable tension and vehicle position using a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), a robust program for modeling and considering both geometric and material nonlinearities of bridge structures subjected to vehicle load with low computational costs. With the superiority of GNN, the proposed model is demonstrated to precisely capture complex nonlinear correlations between the input features and vehicle load in the output. Four popular machine learning methods including artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machines (SVM) are refereed in a comparison. A case study of a cable-stayed bridge with the typical truck is considered to evaluate the model's performance. The results demonstrate that the GNN-based model provides high accuracy and efficiency in prediction with satisfactory correlation coefficients, efficient determination values, and very small errors; and is a novel approach for vehicle load detection with the input data of the existing monitoring system.

Using Machine Learning Techniques for Accurate Attack Detection in Intrusion Detection Systems using Cyber Threat Intelligence Feeds

  • Ehtsham Irshad;Abdul Basit Siddiqui
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.179-191
    • /
    • 2024
  • With the advancement of modern technology, cyber-attacks are always rising. Specialized defense systems are needed to protect organizations against these threats. Malicious behavior in the network is discovered using security tools like intrusion detection systems (IDS), firewall, antimalware systems, security information and event management (SIEM). It aids in defending businesses from attacks. Delivering advance threat feeds for precise attack detection in intrusion detection systems is the role of cyber-threat intelligence (CTI) in the study is being presented. In this proposed work CTI feeds are utilized in the detection of assaults accurately in intrusion detection system. The ultimate objective is to identify the attacker behind the attack. Several data sets had been analyzed for attack detection. With the proposed study the ability to identify network attacks has improved by using machine learning algorithms. The proposed model provides 98% accuracy, 97% precision, and 96% recall respectively.