• Title/Summary/Keyword: Decentralized method

Search Result 243, Processing Time 0.03 seconds

GA-based Optimal Fuzzy Control of Semi-Active Magneto-Rheological Dampers for Seismic Performance Improvement of Adjacent Structures (인접구조물의 내진성능개선을 위한 준능동 MR감쇠기의 GA-최적퍼지제어)

  • Yun, Jung-Won;Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.69-79
    • /
    • 2011
  • This paper proposes a GA-based optimal fuzzy control technique for the vibration control of earthquakeexcited adjacent structures interconnected with semi-active magneto-rheological(MR) dampers. Rule-based fuzzy logic controllers are designed first by implementing heuristic knowledge and the genetic algorithm(GA) is then introduced to optimally tune the fuzzy controllers for enhancing the seismic performance of semi-active control system. For practical implementation, the fuzzy controller simply uses locally measured responses of the dampers involved and directly returns the input voltage to the magneto-rheological dampers in real time through the fuzzy inference mechanism. The local measurement based fuzzy controller provides optimal damping force in a decentralized manner so that it does not require a primary central controller unlike the conventional semi-active control techniques. As a result, it can avoid the unbridgeable discrepancy between the desired control force and the actual damper force that may occur in the conventional control approaches. The validity and effectiveness of the proposed control method are shown numerically on two 20-story earthquake-excited buildings interconnected with MR dampers.

Interstory-interbuilding actuation schemes for seismic protection of adjacent identical buildings

  • Palacios-Quinonero, Francisco;Rubio-Massegu, Josep;Rossell, Josep M.;Rodellar, Jose
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.67-81
    • /
    • 2019
  • Rows of closely adjacent buildings with similar dynamic characteristics are common building arrangements in residential areas. In this paper, we present a vibration control strategy for the seismic protection of this kind of multibuilding systems. The proposed approach uses an advanced Linear Matrix Inequality (LMI) computational procedure to carry out the integrated design of distributed multiactuation schemes that combine interbuilding linking devices with interstory actuators implemented at different levels of the buildings. The controller designs are formulated as static output-feedback H-infinity control problems that include the interstory drifts, interbuilding approachings and control efforts as controlled-output variables. The advantages of the LMI computational procedure are also exploited to design a fully-decentralized velocity-feedback controller, which can define a passive control system with high-performance characteristics. The main ideas are presented by means of a system of three adjacent five-story identical buildings, and a proper set of numerical simulations are conducted to demonstrate the behavior of the different control configurations. The obtained results indicate that interstory-interbuilding multiactuation schemes can be used to design effective vibration control systems for adjacent buildings with similar dynamic characteristics. Specifically, this kind of control systems is able to mitigate the vibrational response of the individual buildings while maintaining reduced levels of pounding risk.

A novel approach for optimal DG allocation in distribution network for minimizing voltage sag

  • Hashemian, Pejman;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.55-73
    • /
    • 2019
  • The cost incurred by voltage sag effect in power networks has always been of important concern for discussions. Due to the environmental constraints, fossil fuel shortage crisis and low efficiency of conventional power plants, decentralized generation and renewable based DG have become trends in recent decades; because DGs can reduce the voltage sag effect in distribution networks noticeably; therefore, optimum allocation of DGs in order to maximize their effectiveness is highly important in order to maximize their effectiveness. In this paper, a new method is proposed for calculating the cost incurred by voltage sag effect in power networks. Thus, a new objective function is provided that comprehends technical standards as minimization of the cost incurred by voltage sag effect, active power losses and economic criterion as the installation and maintenance costs of DGs. Considering operational constraints of the system, the optimum allocation of DGs is a constrained optimization problem in which Lightning Attachment procedure optimization (LAPO) is used to resolve it and is the optimum number, size and location of DGs are determined in IEEE 33 bus test system and IEEE 34 bus test system. The results show that optimum allocation of DGs not only reduces the cost incurred by voltage sag effect, but also improves the other characteristics of the system.

Multi-Layer Bitcoin Clustering through Off-Chain Data of Darkweb (다크웹 오프체인 데이터를 이용한 다계층 비트코인 클러스터링 기법)

  • Lee, Jin-hee;Kim, Min-jae;Hur, Junbeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.715-729
    • /
    • 2021
  • Bitcoin is one of the cryptocurrencies, which is decentralized and transparent. However, due to its anonymity, it is currently being used for the purpose of transferring funds for illegal transactions in darknet markets. To solve this problem, clustering heuristic based on the characteristics of a Bitcoin transaction has been proposed. However, we found that the previous heuristis suffer from high false negative rates. In this study, we propose a novel heuristic for bitcoin clustering using off-chain data. Specifically, we collected and analyzed user review data from Silk Road 4 as off-chain data. As a result, 31.68% of the review data matched the actual Bitcoin transaction, and false negatives were reduced by 91.7% in the proposed method.

Mix-based Decentralized Anonymous Transaction for Blockchain (블록체인을 위한 믹스 기반 분산화된 익명 거래)

  • Lee, Yun-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.51-56
    • /
    • 2020
  • Cryptocurrencies, including Bitcoin, has decentralization, distribution and P2P properties unlike traditional currencies relies on trusted central party such as banks. All transactions are stored transparently and distributively, hence all participants can check the details of those transactions. Due to the properties of cryptographic hash function, deletion or modification of the stored transations is computationally not possible. However, cryptocurrencies only provide pseudonymity, not anonymity, which is provided by traditional currencies. Therefore many researches were conducted to provide anonymity to cryptocurrencies such as mix-based methods. In this paper, I will propose more efficient hybrid mix-based method for anonymity than previous mix-based one.

Multi-system vehicle formation control based on nearest neighbor trajectory optimization

  • Mingxia, Huang;Yangyong, Liu;Ning, Gao;Tao, Yang
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.587-597
    • /
    • 2022
  • In the present study, a novel optimization method in formation control of multi -system vehicles based on the trajectory of the nearest neighbor trajectory is presented. In this regard, the state equations of each vehicle and multisystem is derived and the optimization scheme based on minimizing the differences between actual positions and desired positions of the vehicles are conducted. This formation control is a position-based decentralized model. The trajectory of the nearest neighbor are optimized based on the current position and state of the vehicle. This approach aids the whole multi-agent system to be optimized on their trajectory. Furthermore, to overcome the cumulative errors and maintain stability in the network a semi-centralized scheme is designed for the purpose of checking vehicle position to its predefined trajectory. The model is implemented in Matlab software and the results for different initial state and different trajectory definition are presented. In addition, to avoid collision avoidance and maintain the distances between vehicles agents at a predefined desired distances. In this regard, a neural fuzzy network is defined to be utilized in conjunction with the control system to avoid collision between vehicles. The outcome reveals that the model has acceptable stability and accuracy.

Optimal installation of electric vehicle charging stations connected with rooftop photovoltaic (PV) systems: a case study

  • Heo, Jae;Chang, Soowon
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.937-944
    • /
    • 2022
  • Electric vehicles (EVs) have been growing to reduce energy consumption and greenhouse gas (GHG) emissions in the transportation sector. The increasing number of EVs requires adequate recharging infrastructure, and at the same time, adopts low- or zero-emission electricity production because the GHG emissions are highly dependent on primary sources of electricity production. Although previous research has studied solar photovoltaic (PV) -integrated EV charging stations, it is challenging to optimize spatial areas between where the charging stations are required and where the renewable energy sources (i.e., solar photovoltaic (PV)) are accessible. Therefore, the primary objective of this research is to support decisions of siting EV charging stations using a spatial data clustering method integrated with Geographic Information System (GIS). This research explores spatial relationships of PV power outputs (i.e., supply) and traffic flow (i.e., demand) and tests a community in the state of Indiana, USA for optimal sitting of EV charging stations. Under the assumption that EV charging stations should be placed where the potential electricity production and traffic flow are high to match supply and demand, this research identified three areas for installing EV charging stations powered by rooftop PV in the study area. The proposed strategies will drive the transition of existing energy infrastructure into decentralized power systems. This research will ultimately contribute to enhancing economic efficiency and environmental sustainability by enabling significant reductions in electricity distribution loss and GHG emissions driven by transportation energy.

  • PDF

An Integrated Fault Detection and Isolation Method for Sensors and Actuators of LEO Satellite (저궤도 인공위성의 센서 및 구동기 통합 고장검출 및 분리 기법)

  • Lim, Jun-Kyu;Lee, Jun-Han;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1117-1124
    • /
    • 2011
  • An integrated fault detection and isolation method is proposed in this paper. The main objective of this paper is development fault detection, isolation and diagnosis algorithm based on the DKF (Decentralized Kalman Filter) and the bank of IMM (Interacting Multiple Model) filters using penalty scalar for both partial and total faults and the outlier detection algorithm for preventing false alarm also included. The proposed FDI (Fault Detection and Isolation) scheme is developed in four phases. In the first phase, the outlier detection filter is designed to prevent false alarm as a pre-filter. In the second phases, two local filters and master filter are designed to detect sensor faults. In the third phases, the proposed FDI scheme checks sensor residual to isolate sensor faults and 11 EKFs actuator fault models are designed to detect wherever actuator faults occur. In the last phases, four filters are designed to identify the fault type which is either the total fault or partial fault. The developed scheme can deal with not only sensor and actuator faults, but also preventing false alarm. An important feature of the proposed FDI scheme can decreases fault isolation time and figure out not only fault detection and isolation but also fault type identification. To verify the proposed FDI algorithm performance, the Simulator is also developed under the Matlab/Simulink environment.

Data Resource Management under Distributed Computing Environment (분산 컴퓨팅 환경하에서의 데이타 자원 관리)

  • 조희경;안중호
    • Proceedings of the Korea Database Society Conference
    • /
    • 1994.09a
    • /
    • pp.105-129
    • /
    • 1994
  • The information system of corporations are facing a new environment expressed by miniaturization, decentralization and Open System. It is therefore of utmost importance for corporations to adapt flexibly th such new environment by providing for corresponding changes to their existing information systems. The objectives of this study are to identify this new environment faced by today′s information system and develop effective methods for data resource management under this new environment. In this study, it is assumed that the new environment faced by information systems can be specified as Distributed Computing Environment, and in order to achieve such system, presents Client/server architecture as its representative computing structure, This study defines Client/server architecture as a computing architecture which specialize the fuctionality of the client system and the server system in order to have an application distribute and perform cooperative processing at the best platform. Furthermore, from among the five structures utilized in Client/server architecture for distribution and cooperative processing of application between server and client this study presents two different data management methods under the Client/server environment; one is "Remote Data Management Method" which uses file server or database server and. the other is "Distributed Data Management Method" using distributed database management system. The result of this study leads to the conclusion that in the client/server environment although distributed application is assumed, the data could become centralized (in the case of file server or database server) or decentralized (in the case of distributed database system) and the data management method through a distributed database system where complete responsibility and powers with respect to control of data used by the user are given not only is it more adaptable to modern flexible corporate environment, but in terms of system operation, it presents a more efficient data management alternative compared to existing data management methods in terms of cutting costs.

  • PDF

The study of foreign exchange trading revenue model using decision tree and gradient boosting (외환거래에서 의사결정나무와 그래디언트 부스팅을 이용한 수익 모형 연구)

  • Jung, Ji Hyeon;Min, Dae Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.161-170
    • /
    • 2013
  • The FX (Foreign Exchange) is a form of exchange for the global decentralized trading of international currencies. The simple sense of Forex is simultaneous purchase and sale of the currency or the exchange of one country's currency for other countries'. We can find the consistent rules of trading by comparing the gradient boosting method and the decision trees methods. Methods such as time series analysis used for the prediction of financial markets have advantage of the long-term forecasting model. On the other hand, it is difficult to reflect the rapidly changing price fluctuations in the short term. Therefore, in this study, gradient boosting method and decision tree method are applied to analyze the short-term data in order to make the rules for the revenue structure of the FX market and evaluated the stability and the prediction of the model.