• Title/Summary/Keyword: Decellularization

Search Result 23, Processing Time 0.018 seconds

Biocompatibility of Tissue-Engineered Heart Valve Leaflets Based on Acellular Xenografts (세포를 제거한 이종 심장 판막 이식편을 사용한 조직공학 심장 판막첨의 생체 적합성에 대한 연구)

  • 이원용;성상현;김원곤
    • Journal of Chest Surgery
    • /
    • v.37 no.4
    • /
    • pp.297-306
    • /
    • 2004
  • Current artificial heart valves have several disadvantages, such as thromboembolism, limited durability, infection, and inability to grow. The solution to these problems would be to develop a tissue-engineered heart valves containing autologous cells. The aim of this study was to optimize the protocol to obtain a porcine acellular matrix and seed goat autologous endothelial cells on it, and to evaluate the biological responses of xenograft and xeno-autograft heart valves in goats. Material and Method: Fresh porcine pulmonic valves were treated with one method among 3 representative decellularization protocols (Triton-X, freeze-thawing, and NaCl-SDS). Goat venous endothelial cells were isolated and seeded onto the acellularized xenograft leaflets. Microscopic examinations were done to select the most effective method of decellularizing xenogeneic cells and seeding autologous endothelial cells. Two pulmonic valve leaflets of. 6 goats were replaced by acellularized porcine leaflets with or without seeding autologous endothelial cells while on cardiopulmonary bypass. Goats were sacrificed electively at 6 hours, 1 day, 1 week, 1 month, 3 months, and 6. months after operation. Morphologic examinations were done to see the biological responses of replaced valve leaflets. Result: The microscopic examinations showed that porcine cells were almost completely removed in the leaflets treated with NaCl-SDS. The seeded endothelial cells were more evenly preserved in NaCl-SDS treatment. All 6 goats survived the operation without complications. The xeno- autografts and xenografts showed the appearance, the remodeling process, and the cellular functions of myofibroblasts, 1 day, 1 month, and 3 months after operation, respectively. They were compatible with the native pulmonary leaflet (control group) except for the increased cellularity at 6 months. The xenografts revealed the new endothelial cell lining at that time. Conclusion: Treatment with NaCl-SDS was most effective in obtaining decellularized xenografts and facilitate seeding autologous endothelial cells. The xenografts and xeno-autografts were repopulated with myofibroblasts and endothelial cells in situ serially. Both of grafts served as a matrix for a tissue engineered heart valve and developed into autologous tissue for 6 months.

Development of Porcine Pericardial Heterograft for Clinical Application (Tensile Strength-thickness) (돼지의 심낭을 이용한 이종이식 보철편의 개발 (장력-두께간의 구조적 특성))

  • Kim, Kwan-Chang;Lee, Cheul;Choi, Chang-Hue;Lee, Chang-Ha;Oh, Sam-Sae;Park, Seong-Sik;Kim, Kyung-Hwan;Kim, Woong-Han;Kim, Yong-Jin
    • Journal of Chest Surgery
    • /
    • v.41 no.2
    • /
    • pp.170-176
    • /
    • 2008
  • Background: Bioprosthetic devices for treating cardiovascular diseases and defects may provide alternatives to autologous and homograft tissue. We evaluated the mechanical and physical conditions of a porcine pericardial bioprosthesis treated with Glutaraldehyde (GA), Ethanol, or Sodium dodecylsulfate (SDS) before implantation. Material and Method: 1) Thirty square-shaped pieces of porcine pericardium were fixed in 0.625%, 1.5% or 3% GA solution. 2) The tensile strength and thickness of these and other bioprosthesis, including fresh porcine pericardium, fresh human pericardium, and commercially produced heterografts, were measured. 3) The tensile strength and thickness of the six treated groups (GA-Ethanol, Ethanol-GA, SDS only, SDS-GA, Ethanol-SDS-GA and SDS-Ethanol-GA) were measured. Result: 1) Porcine pericardium fixed in 0.625% GA the thinnest and had the lowest tensile strength, with thickness and tensile strength increasing with the concentration of GA solution. The relationship between tensile strength and thickness of porcine pericardium increased at thicknesses greater than 0.1mm (correlation-coefficient 0.514, 0<0.001). 2) There were no differences in tensile strength or thickness between commercially-produced heterografts. 3) Treatment of GA, ethanol, or SDS minimally influenced thickness and tensile strength of porcine pericardium, except for SDS alone. Conclusion: Porcine pericardial bioprosthesis greater than 0.1 mm thick provide better handling and advantageous tensile strength. GA fixation did not cause physical or mechanical damage during anticalcification or decellularization treatment, but combining SDS-ethanol pre-treatment and GA fixation provided the best tensile strength and thickness.

Development of Porcine Pericardial Heterograft for Clinical Application (Microscopic Analysis of Various Fixation Methods) (돼지의 심낭, 판막을 이용한 이종이식 보철편의 개발(고정 방법에 따른 조직학적 분석))

  • Kim, Kwan-Chang;Choi, Chang-Hyu;Lee, Chang-Ha;Lee, Chul;Oh, Sam-Sae;Park, Seong-Sik;Kim, Woong-Han;Kim, Kyung-Hwan;Kim, Yong-Jiin
    • Journal of Chest Surgery
    • /
    • v.41 no.3
    • /
    • pp.295-304
    • /
    • 2008
  • Background: Various experimental trials for the development of bioprosthetic devices are actively underway, secondary to the limited supply of autologous and homograft tissue to treat cardiac diseases. In this study, porcine bioprostheses that were treated with glutaraldehyde (GA), ethanol, or sodium dodecylsulfate (SDS) were examined with light microscopy and transmission electron microscopy for mechanical and physical imperfections before implantation, Material and Method: 1) Porcine pericardium, aortic valve, and pulmonary valve were examined using light microscopy and JEM-100CX II transmission electron microscopy, then compared with human pericardium and commercially produced heterografts. 2) Sections from six treated groups (GA-Ethanol, Ethanol-GA, SDS only, SDS-GA, Ethanol-SDS-GA and SDS-Ethanol-GA) were observed using the same methods. Result: 1) Porcine pericardium was composed of a serosal layer, fibrosa, and epicardial connective tissue. Treatment with GA, ethanol, or SDS had little influence on the collagen skeleton of porcine pericardium, except in the case of SDS pre-treatment. There was no alteration in the collagen skeleton of the porcine pericardium compared to commercially produced heterografts. 2) Porcine aortic valve was composed of lamina fibrosa, lamina spongiosa, and lamina ventricularis. Treatment with GA, ethanol, or SDS had little influence on these three layers and the collagen skeleton of porcine aortic valve, except in the case of SDS pre-treatment. There were no alterations in the three layers or the collagen. skeleton of porcine aortic valve compared to commercially produced heterografts. Conclusion: There was little physical and mechanical damage incurred in porcine bioprosthesis structures during various glutaraldehyde fixation processes combined with anti-calcification or decellularization treatments. However, SDS treatment preceding GA fixation changed the collagen fibers into a slightly condensed form, which degraded during transmission electron micrograph. The optimal methods and conditions for sodium dodecylsulfate (SDS) treatment need to be modified.