• Title/Summary/Keyword: Decanter

Search Result 22, Processing Time 0.015 seconds

Hot Water Extract of Wheat Bran Attenuates White Matter Injury in a Rat Model of Vascular Dementia

  • Lim, Sun Ha;Lee, Jongwon
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.145-155
    • /
    • 2014
  • Vascular dementia is characterized by white matter lesions involving the demyelination and activation of astrocytes and microglia. In a previous study, we showed that the supernatant of a laboratory-scale, hot water extract of ground whole wheat (TALE) attenuated white matter injury and astrocytic activation in a rat model of bilateral common carotid artery occlusion (BCCAO). In the present study, we made several modifications to the hot water extraction process to remove starch and enable large-scale production. We used wheat bran (WB), which contains less starch, instead of ground whole wheat. In addition, we removed starch granules with a decanter before hot water extraction. The final product, wheat bran extract (WBE), contained 2.42% arabinose, a surrogate marker of arabinoxylan, which is an active constituent of WBE. Supplementation of the rat model of BCCAO with WBE (400 mg/kg/day) for 33 days attenuated white matter injury, which was assessed by Luxol Fast Blue staining, in the corpus callosum (cc) and optic tract (opt) regions. Attenuation of white matter injury in the opt region was accompanied by improvement of the pupillary light reflex. Immunochemical staining revealed that supplementation with WBE reduced astrocytic activation in the cc and opt regions and reduced microglial activation in the opt region. These findings indicate that supplementation with WBE is effective at attenuating white matter injury accompanied by the inhibition of astrocytic and microglial activation. Therefore, extracts from WB, a cheap by-product of wheat milling, can be developed as a nutraceutical to prevent vascular dementia, a disease for which there is no approved pharmaceutical treatment.

A Study on Design of Vacuum Silo for Batch Treatment System for Dredged Soil (준설토 일괄처리시스템을 위한 진공사이로 설계에 관한 연구)

  • Kim, Yong-Seok;Yang, Hae-Rim;Kim, Hac-Sun;Jeoung, Chan-Se;Yang, Soon-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.571-577
    • /
    • 2012
  • In this study, a small movable batch treatment system for dredging soil deposited in a rain water tube is proposed; further, a vacuum silo sorting separation device with a vacuum silo, first-stage sorting separator, and conveyor is designed. The vacuum silo sorting separation device also consists of a storage tank, transferring screw, vacuum gate, screen bar, screen bar cleaner, and vacuum discharging device. In view of the fact that the flow of drawn air in the storage tank is a major factor influencing the sorting separation performance, the optimum shape of the tank is determined by CFD flow analysis. In addition, by using CAE structure analysis, the safety of a storage tank made of boards is examined. The specifications of the vacuum silo sorting separation device are determined by conducting mechanical and dynamic simulations of the driving mechanism of the vacuum silo sorting separation device through 3D-CAD modeling. Following this study, we will design a drum-screen-type second sorter, a decanter-type dehydration device, and waste water tank and pump as a secondary device. Further, on the basis of this design, we will construct a prototype model and carry out a field test.