• Title/Summary/Keyword: Deburring Wheel

Search Result 6, Processing Time 0.018 seconds

An Experimental Study on the Deburring Characteristics according to rpm Change of Deburring Wheel (디버링 휠의 회전수 변화에 따른 디버링 특성에 관한 실험적 연구)

  • Cheon, Kyeong-Ho;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • The modern aircraft consists of tens/hundreds of thousands of components. A large proportion of these components are manufactured using a machining process. A deburring process must be performed after to machining. This study investigates the effect of changes in the deburring wheel rpm on the deburring force and radius. The deburring wheel is used to trim sharp edges off machined parts of the aircraft. The deburring wheel used consists of a core and a nylon hair(this new concept is protected under patent). We find that higher deburring wheel rpm results in increased deburring force and radius. For deburring wheel rotation rates of 500~750rpm, deburring force of 3.4~6.5kgf and deburring radius of 0.4~0.5mm were observed.

Electrochemical Deburring System by the Electroplated CBN Wheel (입방정질화붕소입자 전착지석에 의한 전해디버링 시스템)

  • Choe, In-Hyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.430-438
    • /
    • 1997
  • Deburring and edge finishing technology as the final process of machining operation is required for manufacturing of advanced precise conponents. But, deburring is considered as a difficult problem on going to the high efficient production and automation in the FMS. Removal of burr couldn't have a standard of its definition because of its various shapes, dimensions and properties and mostly depends on manual treatment. Especially, deburring for cross hole inside is very difficult owing to its shape passing through out perpendicular to a main hole. The electrochemical method is suggested as its solution in practical aspect. Therefore, electrochemical deburring technology needs to be developed for the high efficiency and automation of internal deburring in the cross hole. In this study, the new process in the eliminating burr inside cross hole, electrochemical deburring by the wheel electroplated with Cubic-Boron-Nitrade abrasives, is suggested. Its deburring mechanism is described and machining performances is investigated. Also, CBN electroplated wheel is designed and manufactured and then characteristics of electrochemical deburring are investigated through experiments. Overall electrochemical deburring performance against burr inside cross hole is examined in the various power sources such as peak current and direct current.

Electrochemical Deburring System by the Electroplated CBN Wheel (입방정질화붕소입자 전착지석에 의한 전해디버링 시스템)

  • 최인규;김정두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.19-23
    • /
    • 1996
  • Deburring and edge finishing technology as the last process of machining operation is required for manufacturing of advanced procesion components, duburring has treated as a difficult problem on going tothe highefficency, automation in the FMS. Removal of butt with various shapes, dimensions and properties coultn't has a standard and has depended on manual treatment. Especially, deburring for cross hole inside owing to passing through out perpendicular to a main hole is more difficult, the electrolytic method is proper as its solution at practical aspects. Therefore, for the high effciency and automation of intermal deburring in the cross hole, development of electrolytic debutting technology is needed. So, the new process in the burr treatment is supposed. In this study, in the eliminating burr inside cross hole, the principle and machining performances of electrochemical deburring by Cubic-Boron-Nitrade abrasive electroplate wheel are investigated, Design and manufacture of CBN electroplated wheel and analysis of characteristics with electrolytic debutting are achieved. Also deburring efficiency and electrolytic performance for cross hole were examined according to electrolytic current and electrolytic deburring condition corresponding to acquired edge quality was found out.

  • PDF

Robotic rim deburring technique in car wheel (로보트 이용 자동차 휠의 림 디버링)

  • 박종오;전종업;조의경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1144-1148
    • /
    • 1991
  • The problems occurred when developing a automatic wheel deburring system are to make effective flexibility in model change and the irregularity of the position/shape of the burr, to select optimal robotic manufacturing process and to develope optimal end effector. The locations where burr exists are on flange, rim and spoke. Here will be discussed the optimal solution for the removal of rim burr by using robot. The research can be summarized as the automatic robot path generation by recognizing rim contour and automatic deburring process technique. Various rim contour data is generated automatically when the sensor which is fixed to robot is moving with the parallel motion to the wheel center axis and this generated data is transferred to the data storage system and converted to the robot path data. The robotic tool system which is suitable to the rim deburring process is developed by integrating tool, compliance function and sensor. And factory automation system controlled by robot controller and PC is developed. This system shows good productivity and flexibility.

  • PDF

A Study on the Flexible Disk Deburring Process Arc Zone Parameter Prediction Using Neural Network (신경망을 이용한 유연디스크 디버링가공 아크형상구간 인자예측에 관한 연구)

  • Yoo, Song-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.681-689
    • /
    • 2009
  • Disk grinding was often applied to deburring process in order to enhance the final product quality. Inherent chamfering capability of the flexible disk grinding process in the early stage was analyzed with respect to various process parameters including workpiece length, wheel speed, depth of cut and feed. Initial chamfered edge defined as arc zone was characterized with local radius of curvature. Averaged radius and arc zone ratio was well evaluated using neural network system. Additional neural network analysis adding workpiece length showed enhance performance in predicting arc zone ratio and curvature radius with reduced error rate. A process condition design parameter was estimated using remaining input and output parameters with the prediction error rate lower than 2.0% depending on the relevant input parameter combination and neural network structure composition.

  • PDF