• Title/Summary/Keyword: Debris flow analysis

Search Result 196, Processing Time 0.027 seconds

A Study on the Characteristics of Marine Debris in Coastline : Daekwang Beach In Imja Island, Jeollanam-Do, Korea (해안표착물의 특성에 관한 연구 : 전라남도 신안군 임자도 대광해수욕장)

  • Jang, Seong-Woong;Oh, Seung-Yeol;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.123-129
    • /
    • 2011
  • A study on the occurrence and movement of marine debris is required for protecting the marine environment and ecosystem from marine pollution. The aim of this study is to show annual production and movement characteristics through analysis for the flow path, composition and the sources of marine debris. This study analyzed the distribution and characteristics of marine debris collected in the region of $100\;m{\times}20\;m$($=2,000\;m^2$) at the Daekwang Beach in the Yellow Sea. During the collection period from 2008 to 2010, the total weight of the marine debris was 1,445 kg in this site. The most marine debris was plastic amounting to 46.5% of the whole collection; the rest were styrofoam(20%) and wooden material(12.6%). The amount of marine debris mused from foreign country observed 155.5 kg, more than 90% of them was plastic came from China such as buoys. Additionally, this study analyzed seasonal change if marine environment to understand occurrence amount change if marine debris. 2009 and 2010 was high occurrence ratio in season that the north wind is very strong and the occurrence rate appeared highest by 40% in the summer(July) of 2008 that appeared westbound tidal current. Overall, marine Debris mused from foreign country was high occurrence ratio in January, May and then November has a lot of quantity secondly. While, occurrence ratio was the highest by 46% summer(July) in 2008, but in 2009 and 2010 showed the lowest rate to 4%.

The Proposal of Debrisflow Investigation(II) (토석류 재해조사법의 제안(II))

  • Jung, Jin-Young;Chang, Buhm-Soo;Lee, Wang-Gon;Shinn, Chang-Gun;Park, Cheol-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1366-1375
    • /
    • 2010
  • The damage by Debrisflow is occurring repeatedly recently by influences of abnormal climate changes. To reduce damage of Debris flow, primarily establishes the suitable measures and apply, in order to do that it is important for investigate the actual condition of Debrisflow. However, it is difficult to understand the current situation of Debrisflow phenomenon because the limit of technical development. For the reduce damage by future Debrisflow, have to collect data, analysis and preservation base on real status of Debrisflow disasters. This paper will refer to The Proposal of Debrisflow Investigation development have been applied overseas to the The Proposal of Debrisflow Investigation which already proposed it at these papers with bases. And this paper will suggest currently face objective The Proposal of Debrisflow Investigation to be able to do utilization to a Debrisflow occurrence situation and state and further study analysis(2).

  • PDF

Analysis of Slope Hazard Triggering Factors through Field Investigation in Korea Over the Past Four Years (최근 4년간 국내 사면재해 현장조사를 통한 유발인자 분석)

  • Jun, Kyoung-Jea;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.47-58
    • /
    • 2015
  • Triggering rainfall and geologic conditions with the state of slope hazard were investigated based on the field investigation and collected data on the slope hazard during the period between 2011 and 2014 in Korea. Analysis results showed that most of slope hazards occurred in metamorphic rock and debris flow was the most frequent type of slope hazard. Slope hazard increased when the higher monthly mean rainfall was recorded. However, most of slope hazard occurred when certain time elapsed after the moment of maximum hourly rainfall. Finally, more than one month of long-term rainfall was shown to be related to the frequency of slope hazard in the period.

Development of Precast Concrete Method for Eco-Pillar Debris Barrier with Hollow Cross-Section (중공트랙형 단면의 프리캐스트 에코필라 사방댐 공법개발)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.542-552
    • /
    • 2018
  • In this paper, the precast method of a concrete eco-pillar debris barrier was proposed to improve the construct ability and economic efficiency. The performance was validated by experimental and structural analysis. The steel debris barrier has a high construction cost and causes environmental damage with corrosion. The construction of a concrete eco-pillar debris barrier has been increased recently. On the other hand, there are no design standards regarding debris barriers in Korea, and debris barriers are being designed by the experience and sense of engineers. Therefore, in this study, a method to determine the design external forces was proposed and the design was performed by applying a hollow cross-section to the debris barrier. In addition, three types of connection methods of a concrete cantilever column with the maximum bending moment acts were proposed, and validation of the performance of each type was performed with a real-scale experiment. The experimental results showed that the type with loop reinforcement had the highest rigidity and the type with anchorage performance exceeded the maximum bending moment according to the ultimate load. In the manufacturing procedure of mock-up debris barriers, the type with an anchorage-bar was found to have superior construct ability.

Hydraulic Characteristics of Fluid-Granule Mixed Flow in Embankment of Noncohesive Materials Due to Overflow (越流에 의한 非粘着性 堤體에서의 流體-固體 混合流의 水理特性)

  • Kim, Jin-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.661-669
    • /
    • 1997
  • This paper presents a theoretical analysis for a velocity profile of fluid-granule mixed flow and a sheet erosion of an embankment having noncohesive materials due to overflow. The velocity profile were obtained using the stress-strain relationships based on a grain-inertia regime and an erosion depth was obtained using dynamic Coulomb criterion. Experiments were performed to compare with theoretical values and fairly good agreements were found. Theoretical results on velocity profiles, which can be applied to any type of velocity profiles in a fluid-granule mixed flow, showed a considerable improvement for the existing theories on a debris flow. for a design purpose, formulas and figure diagrams for obtaining a velocity profile, an erosion depth, an overflow depth and a granular discharge were proposed for given values of a flood discharge, particle properties and embankment scale.

  • PDF

Slope stability analysis and landslide hazard assessment in tunnel portal area (터널 갱구지역 사면안정성 및 산사태 위험도 평가)

  • Jeong, Hae-Geun;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.387-400
    • /
    • 2013
  • In this study, the slope stability analysis and the landslide hazard assessment in tunnel portal slope were carried out. First, we selected highly vulnerable areas to slope failure using the slope stability analysis and analyzed the slope failure scale. According to analyses results, high vulnerable area to slope failure is located at 485~495 m above sea level. The slope is stable in a dry condition, while it becomes unstable in rainfall condition. The analysis results of slope failure scale show that the depth of slope failure is maximum 2.1 m and the length of slope failure is 18.6 m toward the dip direction of slope. Second, we developed a 3-D simulation program to analyze characteristics of runout behavior of debris flow. The developed program was applied to highly vulnerable areas to slope failure. The result of 3-D simulation shows that debris flow moves toward the central part of the valley with the movement direction of landslide from the upper part to the lower part of the slope. 3-D simulation shows that debris flow moves down to the bottom of mountain slope with a speed of 7.74 m/s and may make damage to the tunnel portal directly after 10 seconds from slope failure.

Debris Flow Dam Positioning Improving by Numerical Analysis (수치해석을 통한 토석류사방댐 설치위치개선에 관한 연구)

  • Jang, Chang Deok;Jun, Kye Won;Jun, Byong Hee;Yeon, Gyu Bang
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.49-49
    • /
    • 2011
  • 토석류(Debris flow)는 산지사면이나 계곡 등에서 진흙과 돌덩어리 등을 포함하는 토석 그 자체 또는 토석과 물의 일체가 유체의 상으로 흘러내리는 흐름을 말하는 것으로 발생을 예측하기가 곤란하며, 하류에 도로가 존재하거나 인근에 민가가 있을 시 막대한 피해를 가져오는 자연현상이다. 또한 산지계곡에서 발생하는 토석류는 발생장소와 시기가 서로 떨어져 있어 연구를 진행하는데 어려움이 있다. 국내에서는 토석류피해의 저감을 위한 방법으로 주로 토석류 대책 사방댐의 설치를 선택하고 있다. 하지만 사방댐의 설치위치는 현재까지 모호한 결정기준에 의지하고 있어 이에 대한 개선이 필요한 실정이다. 본 연구에서는 3차원 정밀좌표를 손쉽게 취득할 수 있는 삼차원 광대역 레이저 스캐너를 이용하여 토석류 발생 가능성이 높은 지역의 지형자료를 취득하고 토석류를 해석할 수 있는 1차원 수치모형을 이용하여 토석류 유출량을 예측하였다. 또한 사방댐의 설치위치결정에 대한 참고자료로 활용하기 위해 사방댐의 토석류피해 저감효과를 설치위치에 따라 분석하였다. 모형의 적용결과 토석류 발생 저감을 위해 설치한 사방시설의 위치에 따른 토석류 저감효과를 비교 확인할 수 있었다.

  • PDF

Analysis on the Characteristics of Geomorphological Features Affecting the Initial State of Landslides (초기 산사태 발생에 영향을 미치는 지형요소의 특성분석)

  • Cha, A-Reum;Kim, Tai-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.61-68
    • /
    • 2014
  • The main objective of this study is to evaluate the preliminary landslide hazard based on the identification of geomorphological features, which are believed to be critical values in the initial state of landslides. Two methods, SINMAP and Planarity analyses, are used to simulate those characteristics where landslides are actually located. Results showed that both methods well discriminate geomorphic features between stable and unstable domains in the landslide areas. SINMAP analysis which is the consecutive model considering external factors like infiltration identifies the landslide hazard especially for debris flow type landslides better than plararity analysis focusing on a specific area. This analysis combined with other methods dealing with specific characteristics of geomorphological feature, the accurate landslide hazard will be evaluated.

Assessment of Runout Distance of Debris using the Artificial Neural Network (인공신경망을 이용한 사태물질 이동거리 산정)

  • Seo Yong-Seok;Chae Byung-Gon;Kim Won-Young;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.145-154
    • /
    • 2005
  • This study conducted to develop an assessment method of runout distance of debris flow that is a major type of landslides in Korea. In order to accomplish the objectives, this study performed detailed field survey of runout distance and laboratory soil tests using 24 landslides over three pilot sites. Based on the data of the field survey and the laboratory tests, an assessment method of runout distance was suggested using the artificial neural network. The input data for the analysis of artificial neural network are change rate of slope angle, Permeability coefficient of in-situ soil, dry density, void ratio, volume of debris and the measured runout distance. The analyzed results using the artificial neural network show low error rate of inference distributing lower than $10\%$. Some cases have $5\%$ and $2\%$ of error rates of inferences. The results can be thought as excellent teaming rates. However, it is difficult to be accepted as excellent results if it is considered with the results derived using only 24 landslide data. Therefore, more landslide data should be surveyed and analyzed to increase the confidence in the assessment results.

Quality Grading of Concrete Soil Erosion Control Dam in the Aspect of Unconfined Concrete Strength by Surface-Wave Technique (표면파 기법에 의한 콘크리트 사방댐의 콘크리트 강도 등급 평가)

  • Lee, Chang-Woo;Joh, Sung-Ho;Park, Ki-Hyung;Kim, Min-Sik;Yoon, Ho-Joong;Raja Ahmad, Raja Hassanul
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.412-425
    • /
    • 2012
  • Concrete Soil Erosion Control Dam, which blocks flow of debris flow in torrential stream, are reported to lose expected functions due to structural failure and collapses, caused by poor construction, material deterioration and external impacts. In this paper, an integrity assessment technique for debris barriers was proposed, which allows preliminary detection of problems inherent in debris barriers. The proposed integrity assessment technique is a non-destructive method based on SASW method, one of surface-wave tests. In this paper, a practical procedure and analysis guidelines in applying the SASW technique to debris barrier was proposed and its validity was verified using five decrepit debris barriers older than 20-year old. As a result, the SASW method was validated for the reliable grade evaluation method for concrete soil erosion control dam, and the resulting grades turned out to agree with the results determined by Sabang Associations.