• 제목/요약/키워드: Death receptor 5

Search Result 139, Processing Time 0.034 seconds

Neuroprotective Effects of Ginsenoside Rg3 against 24-OH-cholesterol-induced Cytotoxicity in Cortical Neurons

  • Roh, Yoon-Seok;Kim, Hyoung-Bae;Kang, Chang-Won;Kim, Bum-Seok;Nah, Seung-Yeol;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.246-253
    • /
    • 2010
  • Ginsenoside $Rg_3$ ($Rg_3$), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents in vitro and antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. In the present study, we examined the neuroprotective effects of $Rg_3$ on 24-hydroxycholesterol (24-OH-chol)-induced cytotoxicity in vitro. The results showed that $Rg_3$ treatment significantly and dose-dependently inhibited 24-OH-chol-induced cell death in rat cultured cortical neurons, with an $IC_{50}$ value of $28.7{\pm}7.5\;{\mu}m$. Furthermore, the $Rg_3$ treatment not only significantly reduced DNA damage, but also dose-dependently attenuated 24-OH-chol-induced caspase-3 activity. To study the mechanisms underlying the in vitro neuroprotective effects of $Rg_3$ against 25-OH-chol-induced cytotoxicity, we also examined the effect of $Rg_3$ on intracellular $Ca^{2+}$ elevations in cultured neurons and found that $Rg_3$ treatment dose-dependently inhibited increases in intracellular $Ca^{2+}$, with an $IC_{50}$ value of $40.37{\pm}12.88\;{\mu}m$. Additionally, $Rg_3$ treatment dose-dependently inhibited apoptosis with an $IC_{50}$ of $47.3{\pm}14.2\;{\mu}m$. Finally, after confirming the protective effect of $Rg_3$ using a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, we found that $Rg_3$ is an active component in ginseng-mediated neuroprotection. These results collectively indicate that $Rg_3$-induced neuroprotection against 24-OH-chol in rat cortical neurons might be achieved via inhibition of a 24-OH-chol-mediated $Ca^{2+}$ channel. This is the first report to employ cortical neurons to study the neuroprotective effects of $Rg_3$ against 24-OH-chol. In conclusion, $Rg_3$ was effective for protecting cells against 24-OH-chol-induced cytotoxicity in rat cortical neurons. This protective ability makes $Rg_3$ a promising agent in pathologies implicating neurodegeneration such as apoptosis or neuronal cell death.

Impairment of Mitochondrial ATP Synthesis Induces RIPK3-dependent Necroptosis in Lung Epithelial Cells During Lung Injury by Lung Inflammation

  • Su Hwan Lee;Ju Hye Shin;Min Woo Park;Junhyung Kim;Kyung Soo Chung;Sungwon Na;Ji-Hwan Ryu;Jin Hwa Lee;Moo Suk Park;Young Sam Kim;Jong-Seok Moon
    • IMMUNE NETWORK
    • /
    • v.22 no.2
    • /
    • pp.18.1-18.15
    • /
    • 2022
  • Dysfunction of mitochondrial metabolism is implicated in cellular injury and cell death. While mitochondrial dysfunction is associated with lung injury by lung inflammation, the mechanism by which the impairment of mitochondrial ATP synthesis regulates necroptosis during acute lung injury (ALI) by lung inflammation is unclear. Here, we showed that the impairment of mitochondrial ATP synthesis induces receptor interacting serine/threonine kinase 3 (RIPK3)-dependent necroptosis during lung injury by lung inflammation. We found that the impairment of mitochondrial ATP synthesis by oligomycin, an inhibitor of ATP synthase, resulted in increased lung injury and RIPK3 levels in lung tissues during lung inflammation by LPS in mice. The elevated RIPK3 and RIPK3 phosphorylation levels by oligomycin resulted in high mixed lineage kinase domain-like (MLKL) phosphorylation, the terminal molecule in necroptotic cell death pathway, in lung epithelial cells during lung inflammation. Moreover, the levels of protein in bronchoalveolar lavage fluid (BALF) were increased by the activation of necroptosis via oligomycin during lung inflammation. Furthermore, the levels of ATP5A, a catalytic subunit of the mitochondrial ATP synthase complex for ATP synthesis, were reduced in lung epithelial cells of lung tissues from patients with acute respiratory distress syndrome (ARDS), the most severe form of ALI. The levels of RIPK3, RIPK3 phosphorylation and MLKL phosphorylation were elevated in lung epithelial cells in patients with ARDS. Our results suggest that the impairment of mitochondrial ATP synthesis induces RIPK3-dependent necroptosis in lung epithelial cells during lung injury by lung inflammation.

Phosphodiesterase III Inhibitor Cilostazol Protects Amyloid β-Induced Neuronal Cell Injury via Peroxisome Proliferator-Activated Receptor-γ Activation (Amyloid β에 의해 유도된 신경세포 손상에 대한 phosphodiesterase III inhibitor인 cilostazol의 신경보호 효과)

  • Park, Sun-Haeng;Kim, Ji-Hyun;Bae, Sun-Sik;Hong, Ki-Whan;Choi, Byung-Tae;Shin, Hwa-Kyoung
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.647-655
    • /
    • 2011
  • The neurotoxicity of aggregated amyloid ${\beta}$ ($A{\beta}$) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease (AD). It can cause neurotoxicity in AD by evoking a cascade of apoptosis to neuron. Here, we investigated the neuroprotective effects of cilostazol, which acts as a phosphodiesterase III inhibitor, on $A{\beta}_{25-35}$-induced cytotoxicity in mouse neuronal cells and cognitive decline in the C57BL/6J AD mouse model via peroxisome proliferator-activated receptor (PPAR)-${\gamma}$ activation. $A{\beta}_{25-35}$ significantly reduced cell viability and increased the number of apoptotic-like cells. Cilostazol treatment recovered cells from $A{\beta}$-induced cell death as well as rosiglitazone, a PPAR-${\gamma}$ activator. These effects were suppressed by GW9662, an antagonist of PPAR-${\gamma}$ activity, indicative of a PPAR-${\gamma}$-mediated signaling. In addition, cilostazol and rosiglitazone also restored PPAR-${\gamma}$ activity levels that had been altered as a result of $A{\beta}_{25-35}$ treatment, which were antagonized by GW9662. Furthermore, cilostazol also markedly decreased the number of apoptotic-like cells and decreased the Bax/Bcl-2 ratio. Intracerebroventricular injection of $A{\beta}_{25-35}$ in C57BL/6J mice resulted in impaired cognitive function. Oral administration of cilostazol (20 mg/kg) for 2 weeks before $A{\beta}_{25-35}$ injection and once a day for 4 weeks post-surgery almost completely prevented the $A{\beta}_{25-35}$-induced cognitive deficits, as did rosiglitazone. Taken together, our findings suggest that cilostazol could attenuate $A{\beta}_{25-35}$-induced neuronal cell injury and apoptosis as well as promote the survival of neuronal cells, subsequently improving cognitive decline in AD, partly because of PPAR-${\gamma}$ activation. The phosphodiesterase III inhibitor cilostazol may be the basis of a novel strategy for the therapy of AD.

The Effects of Cysteamine on the Radiation-Induced Apoptosis (방사선조사에 의해 발생되는 세포고사에 대한 Cysteamine의 효과)

  • Choi, Young-Min;Park, Chang-Gyo;Cho, Heung-Lae;Lee, Hyung-Sik;Hur, Won-Joo
    • Radiation Oncology Journal
    • /
    • v.18 no.3
    • /
    • pp.214-219
    • /
    • 2000
  • Purpose : To Investigate the pathways of radiation induced apoptosls and the effect of cysteamine (${\beta}$-mercaptoethyiamine), as a radioprotector, on it. Materials and Methods : HL-50 ceils were assigned to control, irradiated, and cysteamlne (1 mM, 10mM) pretreated groups. Irradiation was given In a single fraction of 10 Gy (6 MV x-ray) and cysteamine was administered 1 hour before irradiation. The activities of caspase-8 were measured in control and irradiated group to evaluate its relation to the radiation Induced apoptosis. To evaluate the role of cysteamine In radiation Induced apoptosis, the number of viable cells, the expression and activity of caspase-3, and the expression of poly (ADP-ribose) polymerase (PARP) were measured and compared after irradiating the HL-60 celis with cysteamine pretreatment or not. Results : The intraceliular caspase-8 activity, known to be related to the death receptor induced apoptosis, was not affected by irradiation(p>0.05). The number of viable cells began to decrease from 6 hours after irradiation (p>0.05), but the number of viable cells In 1 mM cysteamine pretreated group was not decreased after irradiation and was similar to those in the control group. In caspase-3 analyses, known as apoptosis executioner, its expression was not different but its activity was Increased by irradiation(p>0.05). However, this Increase of activity was suppressed by the pretreatment of 1 mM cysteamine. The cleavage of PARP, thought to be resulted from caspase-3 activation, occurred after irradiation which was attenuated by the pretreatment of 1 mM cysteamine. Conclusion : These results show that radiation induced apoptotic process is somewhat different from death receptor induced one and the pretreatment of 1 mM cysteamine has a tendency to decrease the radiation-induced apoptosis in HL-60 cells.

  • PDF

Effects of Scutellaria baicalensis GEORGI on Gene Expression in a Hypoxic Model of Cultured Rat Cortical Cells (배양한 흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)이 유전자 표현에 미치는 영향)

  • Chung, Sung-Hyun;Shin, Gil-Cho;Lee, Won-Chul;Kim, Sung-Bae
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.324-336
    • /
    • 2004
  • Objectives : The purpose of this investigation is to evaluate the effects of Scutellaria baicalensis GEORGI on alteration in gene expression in a hypoxia model using cultured rat cortical cells. Methods : E18 rat cortical cells were grown in a Neurobasal medium containing B27 supplement. On 12 DIV, Scutellaria baicalensis GEORGI(20 ug/ml) was added to the culture media and left for 24 hrs. On 11 DIV, cells were given a hypoxic insult $(2%\;O_2/5%\;CO_2,\;37^{\circ}C,\;3\;hrs)$, returned to normoxia and cultured for another 24 hrs. Total RNA was prepared from Scutellaria baicalensis GEORGI-untreated (control) and -treated cultures and alteration in gene expression was analysed by microarray using rat 5K-TwinChips. Results : For most of the genes altered in expression, the Global M values were between -0.5 to +0.5. Among these, 1143 genes increased in their expression by more than Global M +0.1, while 1161 genes decreased by more than Global M -0.1. Effects on some of the genes whose functions are implicated in neural viability are as follows: 1) The expression of apoptosis-related genes such as Bad (Global M = 0.39), programmed cell death-2(Pdcd2) (Global M = 0.20) increased, while Purinergic receptor P2X(P2rxl) Global M = -0.22), Bc12-like1(Bc1211)(Global M = -0.19) decreased. 2) The expression of 'response to stress-related genes such as antioxidation-related AMP-activated protein kinase subunit gamma 1 gene (Prkag1) (Global M = 0.14), catalase gene (Global M = 0.14) and Heme Oxygenase(Hmoxl) increased. 3) The expression of Fos like antigen 2 (Fos12) expressed in neurons that survive ischemic insult increased (Global M = 0.97). Conclusions : these data suggest that Scutellaria baicalensis GEORGI increases the expression of antiapoptosis- and antioxidation- related genes in a way that can not yet be explained.

  • PDF

Diagnosis of Pigs Producing PSE Meat using DNA Analysis (DNA검사기법을 이용한 PSE 돈육 생산 돼지 진단)

  • Chung Eui-Ryong;Chung Ku-Young
    • Food Science of Animal Resources
    • /
    • v.24 no.4
    • /
    • pp.349-354
    • /
    • 2004
  • Stress-susceptible pigs have been known as the porcine stress syndrome (PSS), swine PSS, also known as malignant hyperthermia (MH), is characterized as sudden death and production of poor meat quality such as PSE (pale, soft and exudative) meat after slaughtering. PSS and PSE meat cause major economic losses in the pig industry. A point mutation in the gene coding for the ryanodine receptor (RYR1) in porcine skeletal muscle, also known calcium (Ca$^{2+}$) release channel, has been associated with swine PSS and halothane sensitivity. We used the PCR-RFLP(restriction fragment length polymorphism) and PCR-SSCP (single strand conformation polymorphism) methods to detect the PSS gene mutation (C1843T) in the RYR1 gene and to estimate genotype frequencies of PSS gene in Korean pig breed populations. In PCR-RFLP and SSCP analyses, three genotypes of homozygous normal (N/M), heterozygous carrier (N/n) and homozygous recessive mutant (n/n) were detected using agarose or polyacrylamide gel electrophoresis, respectively. The proportions of normal, carrier and PSS pigs were 57.1, 35.7 and 7.1% for Landrace, 82.5, 15.8 and 1.7% far L. Yorkshire, 95.2, 4.8 and 0.0% for Duroc and 72.0, 22.7 and 5.3% for Crossbreed. Consequently, DNA-based diagnosis for the identification of stress-susceptible pigs of PSS and pigs producing PSE meat is a powerful technique. Especially, PCR-SSCP method may be useful as a rapid, sensitive and inexpensive test for the large-scale screening of PSS genotypes and pigs with PSE meat in the pork industry.y.

Anti-oxidative and Anti-cancer Activities of Treculia africana Extract in Human Colon Adenocarcinoma HT29 Cells (대장암세포주 HT29에서의 Treculia africana 추출물의 항산화 및 항암 활성 분석)

  • Oh, You Na;Jin, Soojung;Park, Hyun-jin;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.515-522
    • /
    • 2015
  • Treculia africana Decne, a breadfruit species, is native to many parts of West and Tropical Africa. The breadfruit belongs to the family Moraceae and is one of the four members of the genera Treculia. The crude extract of T. africana has been used in folk medicine as an anti-inflammatory agent for various ailments, such as whooping cough. In this study, we evaluated the anti-oxidative and anti-cancer activities of the methanol extract of T. africana Decne (META) and the molecular mechanisms of its anti-cancer effects in human colon carcinoma HT29 cells. The META exhibited anti-oxidative activity through a DPPH radical scavenging capacity and inhibited cell growth in a dose-dependent manner in HT29 cells. META treatment induced apoptosis of HT29 cells, showing an increase in the percentage of both SubG1 cells and Annexin V-positive cells and the formation of apoptotic bodies in a dose-dependent manner. META-mediated apoptosis was associated with the up-regulation of the death receptor FAS and Bax and a decrease in the Bcl-2 expression. META-treated HT29 cells also showed the release of cytochrome c from the mitochondria into the cytosol, activation of caspase-3, caspase-8, and caspase-9, and proteolytic cleavage of poly ADP-ribose polymerase (PARP). These findings suggest META may exert an anti-cancer effect in HT29 cells by inducing apoptosis through both intrinsic and extrinsic pathways.

Antioxidative and Anticancer Activities of Julbernardia globiflora Extract in Human Colon Adenocarcinoma HT29 Cells (Julbernardia globiflora 추출물의 항산화 활성 및 인체 대장암 세포 HT29에 대한 항암 활성 분석)

  • Oh, You Na;Jin, Soojung;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.545-552
    • /
    • 2017
  • Julbernardia globiflora, a tropical African tree widespread in Miombo woodland, has been used in folk medicine for the treatment of depression and stomach problems. However, the antioxidative and anticancer activities of J. globiflora remain unclear. The objective of this study is to evaluate the antioxidative and anticancer effects of methanol extract of J. globiflora (MEJG) and the molecular mechanism of its anticancer activity in human colon carcinoma HT29 cells. MEJG exhibited significant antioxidative effect with an $IC_{50}$ (concentration at 50% inhibition) value of $1.23{\mu}g/ml$ measuring by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and inhibited cell proliferation in a dose-dependent manner in HT29 cells. We found that MEJG induced apoptosis of HT29 cells with the increase of apoptotic cells and apoptotic bodies using Annexin V staining and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. The MEJG treatment showed the increase of Fas, a death receptor, and Bax, a pro-apoptotic protein, and the decrease of Bcl-2, an anti-apoptotic protein, resulting in the release of cytochrome c from the mitochondria into the cytosol and activation of caspase-3, -8 and -9. The apoptotic effects of MEJG were confirmed by cleavage of poly (ADP-ribose) polymerase (PARP). Collectively, these results suggest that MEJG may exert the anticancer effect in HT29 cells by inducing apoptosis via both the intrinsic and extrinsic pathways.

Overexpression of Rcan1-1L Inhibits Hypoxia-Induced Cell Apoptosis through Induction of Mitophagy

  • Sun, Lijun;Hao, Yuewen;An, Rui;Li, Haixun;Xi, Cong;Shen, Guohong
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.785-794
    • /
    • 2014
  • Mitophagy, a cellular process that selectively targets dysfunctional mitochondria for degradation, is currently a hot topic in research into the pathogenesis and treatment of many human diseases. Considering that hypoxia causes mitochondrial dysfunction, which results in cell death, we speculated that selective activation of mitophagy might promote cell survival under hypoxic conditions. In the present study, we introduced the Regulator of calcineurin 1-1L (Rcan1-1L) to initiate the mitophagy pathway and aimed to evaluate the effect of Rcan1-1L-induced mitophagy on cell survival under hypoxic conditions. Recombinant adenovirus vectors carrying Rcan1-1L were transfected into human umbilical vein endothelial cells and human adult cardiac myocytes. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay and Trypan blue exclusion assay, Rcan1-1L overexpression was found to markedly reverse cell growth inhibition induced by hypoxia. Additionally, Rcan1-1L overexpression inhibited cell apoptosis under hypoxic conditions, as detected by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis assay. Meanwhile, the mitochondria-mediated cell apoptotic pathway was inhibited by Rcan1-1L. In contrast, knockdown of Rcan1-1L accelerated hypoxia-induced cell apoptosis. Moreover, Rcan1-1L overexpression significantly reduced mitochondrial mass, decreased depolarized mitochondria, and downregulated ATP and reactive oxygen species production. We further delineated that the loss of mitochondrial mass was due to the activation of mitophagy induced by Rcan1-1L. Rcan1-1L overexpression activated autophagy flux and promoted translocation of the specific mitophagy receptor Parkin into mitochondria from the cytosol, whereas inhibition of autophagy flux resulted in the accumulation of Parkin-loaded mitochondria. Finally, we demonstrated that mitochondrial 1permeability transition pore opening was significantly increased by Rcan1-1L overexpression, which suggested that Rcan1-1L might evoke mitophagy through regulating mitochondrial permeability transition pores. Taken together, we provide evidence that Rcan1-1L overexpression induces mitophagy, which in turn contributes to cell survival under hypoxic conditions, revealing for the first time that Rcan1-1L-induced mitophagy may be used for cardioprotection.

Immune Checkpoint Inhibitors for Non-Small-Cell Lung Cancer with Brain Metastasis : The Role of Gamma Knife Radiosurgery

  • Lee, Min Ho;Cho, Kyung-Rae;Choi, Jung Won;Kong, Doo-Sik;Seol, Ho Jun;Nam, Do-Hyun;Jung, Hyun Ae;Sun, Jong-Mu;Lee, Se-Hoon;Ahn, Jin Seok;Ahn, Myung-Ju;Park, Keunchil;Lee, Jung-Il
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.2
    • /
    • pp.271-281
    • /
    • 2021
  • Objective : Immune checkpoint inhibitors (ICIs) are approved for treating non-small-cell lung cancer (NSCLC); however, the safety and efficacy of combined ICI and Gamma Knife radiosurgery (GKS) treatment remain undefined. In this study, we retrospectively analyzed patients treated with ICIs with or without GKS at our institute to manage patients with brain metastases from NSCLC. Methods : We retrospectively reviewed medical records of patients with brain metastases from NSCLC treated with ICIs between January 2015 and December 2017. Of 134 patients, 77 were assessable for brain responses and categorized into three groups as follows : group A, ICI alone (n=26); group B, ICI with concurrent GKS within 14 days (n=24); and group C, ICI with non-concurrent GKS (n=27). Results : The median follow-up duration after brain metastasis diagnosis was 19.1 months (range, 1-77). At the last follow-up, 53 patients (68.8%) died, 20 were alive, and four were lost to follow-up. The estimated median overall survival (OS) of all patients from the date of brain metastasis diagnosis was 20.0 months (95% confidence interval, 12.5-27.7) (10.0, 22.5, and 42.1 months in groups A, B, and C, respectively). The OS was shorter in group A than in group C (p=0.001). The intracranial disease progression-free survival (p=0.569), local progression-free survival (p=0.457), and complication rates did not significantly differ among the groups. Twelve patients showed leptomeningeal seeding (LMS) during follow-up. The 1-year LMS-free rate in treated with ICI alone group (69.1%) was significantly lower than that in treated with GKS before ICI treatment or within 14 days group (93.2%) (p=0.004). Conclusion : GKS with ICI showed no favorable OS outcome in treating brain metastasis from NSCLC. However, GKS with ICI did not increase the risk of complications. Furthermore, compared with ICI alone, GKS with ICI may be associated with a reduced incidence of LMS. Further understanding of the mechanism, which remains unknown, may help improve the quality of life of patients with brain metastasis.