• 제목/요약/키워드: Death receptor 5

검색결과 139건 처리시간 0.033초

AGS 인체위암세포에서 발효된 아가콩 추출물에 의한 apoptosis 유도 (Induction of Apoptosis by Ethanol Extracts of Fermented Agabeans in AGS Human Gastric Carcinoma Cells)

  • 김성열;이혜현;김민정;서민정;홍수현;최영현;강병원;박정욱;주우홍;류은주;정영기
    • 생명과학회지
    • /
    • 제20권12호
    • /
    • pp.1872-1881
    • /
    • 2010
  • 본 연구에서는 대두(FS)와 아가콩의 발효추출물(FYA)의 항암활성 기전을 확인하기 위해 AGS 인체위암세포의 증식에 미치는 영향을 조사하였다. AGS 세포에서 FS 및 FYA 처리로 인하여 암세포의 증식이 처리 농도 의존적으로 강하게 억제하였고, apoptosis 유발을 의미하는 세포의 전반적인 형태 및 핵의 변형 또한 동반하였다. 또한 세포주기 분석을 통하여 이 현상이 apoptosis 유도에 의한 것임을 확인하였다. AGS 세포에 처리된 FS 및 FYA는 pro-apoptotic factor인 Bax의 발현 증가를 통한 intrinsic pathway나, death receptor 관련 유전자의 발현 증가를 통한 extrinsic pathway를 활성화시키며, 더 나아가서 IAP family인자의 발현 억제 및 caspases의 활성 증가를 일으켜 apoptosis를 유발시키는 것을 유추할 수 있었는데, 이러한 효과들은 FS보다 FYA에서 더욱더 탁월하였다. 이는 향후 아가콩 발효추출물이 항암치료를 위한 적용 가능성이 매우 우수함을 제시하여 주는 결과이다.

Involvement of Bcl-2 Family and Caspases Cascade in Sodium Fluoride-Induced Apoptosis of Human Gingival Fibroblasts

  • Jung, Ji-Yeon;Park, Jae-Hong;Jeong, Yeon-Jin;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권5호
    • /
    • pp.289-295
    • /
    • 2006
  • Sodium fluoride (NaF) has been shown to be cytotoxic and elicit inflammatory response in human. However, the cellular mechanisms underlying NaF-induced cytotoxicity in periodontal tissues have not yet been elucidated. This study is aimed to investigate the mechanisms of NaF-induced apoptosis in human gingival fibroblast (HGF). NaF decreased the cell viability of HGF in a dose- and time-dependent manner. NaF gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. However, NaF did not affect the production of ROS. In addition, NaF augumented cytochrome c release from mitochondria into the cytosol, and enhanced caspase -9 and -3 activities., cleavage (85 kDa fragments) of poly (ADP-ribose) polymerase (PARP) and upregulation of voltage-dependent anion channel (VDAC) 1. These results demonstrated that NaF-induced apoptosis in HGF may be mediated with mitochondria. Furthermore, NaF elevated caspase-8 activity and upregulated Fas-ligand (Fas-L), suggesting involvement of death receptor mediated pathway in NaF-induced apoptosis. Expression of Bcl-2, an anti-apoptotic Bcl-2 family, was downregulated, whereas expression of Bax, a pro-apoptotic Bcl-2 family, was not affected in NaF-treated HGF. These results suggest that NaF induces apoptosis in HGF through both mitochondria- and death receptor-mediated pathway mediated by Bcl-2 family.

T-Cell Immunoglobulin Mucin 3 Expression on Tumor Infiltrating Lymphocytes as a Positive Prognosticator in Triple-Negative Breast Cancer

  • Byun, Kyung Do;Hwang, Hyo Jun;Park, Ki Jae;Kim, Min Chan;Cho, Se Heon;Ju, Mi Ha;Lee, Jin Hwa;Jeong, Jin Sook
    • Journal of Breast Cancer
    • /
    • 제21권4호
    • /
    • pp.406-414
    • /
    • 2018
  • Purpose: T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) is an emerging immune response molecule related to T-cell anergy. There has been tremendous interest in breast cancer targeting immune checkpoint molecules, especially in the triple-negative breast cancer (TNBC). This study was designed to investigate TIM-3 expression on tumor infiltrating lymphocytes (TILs), its relationships with clinicopathological parameters and expression of programmed death receptor 1 (PD-1)/programmed death receptor ligand 1 (PD-L1), and its prognostic role. Methods: Immunohistochemistry on tissue microarray blocks produced from 109 samples of invasive ductal carcinoma type TNBC was performed with antibodies toward TIM-3, PD-1, PD-L1 and breast cancer-related molecular markers. Associations between their expression and clinicopathological parameters as well as survival analyses were performed. Results: TIM-3 was expressed in TILs from all 109 TNBCs, consisting of 17 cases (<5%), 31 cases (6%-25%), 48 cases (26%-50%), and 13 cases (>51%). High TIM-3 was significantly correlated with younger patients (p=0.0101), high TILs (p=0.0029), high tumor stage (p=0.0018), high PD-1 (p=0.0001) and high PD-L1 (p=0.0019), and tended to be associated with higher histologic grade, absence of extensive in situ components and microcalcification. High TIM-3 expression was significantly associated with a combinational immunophenotype group of high PD-L1 and high PD-1 (p<0.0001). High TIM-3 demonstrated a significantly better disease-free survival (DFS) (p<0.0001) and longer overall survival (OS) (p=0.0001), together with high TILs and high PD-1. In univariate survival analysis, high TIM-3 showed reduced relapse risk (p<0.0001) and longer OS (p=0.0003), together with high PD-1 expression. In multivariate analysis, high TIM-3 was statistically significant in predicting prognosis, showing better DFS (hazard ratio [HR], 0.0994; 95% confidence interval [CI], 0.0296-0.3337; p=0.0002) and longer OS (HR, 0.1109; 95% CI, 0.0314-0.3912; p=0.0006). Conclusion: In this study, we demonstrate that TIM-3 expression is an independent positive prognostic factor in TNBC, despite its association with poor clinical and pathologic features.

대식세포에서 지단백 산화에 대한 수용성 Chitinous Compounds의 항산화 효과에 대한 연구 (Antioxidative Effects of Water-Soluble Chitinous Compounds on Oxidation of Low Density Lipoprotein in Macrophages)

  • 이세희;박성희;이용진;윤정한;최연정;최정숙;강영희
    • Journal of Nutrition and Health
    • /
    • 제36권9호
    • /
    • pp.908-917
    • /
    • 2003
  • It has been proposed that oxidative modification of LDL (oxLDL) plays a significant role in the pathogenicity of atherogenesis. We tested the hypothesis that chitin and chitosan may function as antioxidants with respect to 0.1 mg cholesterol/ml LDL incubated with 5 $\mu$ M Cu$^2$$^{+}$alone or in the P338Dl mouse macrophage system using L-ascorbic acid as a standard classical antioxidant. The degree of oxLDL formation was ascertained by the relative electrophoretic mobility (rEM) in the combination of thiobarbituric acid reactive substances (TBARS) levels, and the cytotoxicity of oxLDL was detected by macrophage viability. The oxLDL uptake and foam cell formation of macrophages were measured by Oil Red O staining. Incubation with Cu$^2$$^{+}$and macrophages increased rEM of LDL and stimulated TBARS formation. Culture of macrophages with LDL in the presence 5 $\mu$ M Cu$^2$$^{+}$induced macrophage death. In cell-free system 200 $\mu$g/ml water-soluble chitosan and chitosan-oligosaccharide blocked oxLDL formation. Water-soluble chitosan and chitosan-oligosaccharide blocked oxLDL formation near-completely relative to L-ascorbic acid, whereas water-soluble chitin and chitin-oligosaccharide had no measurable antioxidant effect. In macrophage system water-soluble chitosan and chitosan-oligosaccharide blocked oxidation of LDL with a significant increase in cell viability, and decreased TBARS in medium. As for the inhibitory effect on macrophage foam cell formation, chitosan and its oligosaccharide, but not watersoluble chitin, revealed the effectiveness. The endothelial expression of lectin-like oxLDL receptor-1 (LOX-1) was tested by Western blot analysis, and chitosan, chitosan-oligosaccharide and chitin-oligosaccharide blocked LOX-1 expression. These results indicate that water-soluble chitosan and its oligosaccharide showed the inhibitory effect on Cu$^2$$^{+}$-induced LDL oxidation of macrophages, and chitosan, chitosan-oligosaccharide and chitin-oligosaccharide had blocking effect on oxLDL receptor expression in the human umbilical vein endothelial system. Thus, water-soluble chitosan and its oligosaccharides possess anti-atherogenic potentials possibly through the inhibition of macrophage LDL oxidation or endothelial oxLDL receptor expression depending on chemical types.l types.

오미자 종자 정유에 의한 인체백혈병 U937 세포의 apoptosis 유도 (Apoptotic Cell Death of Human Leukemia U937 Cells by Essential Oil purified from Schisandrae Semen)

  • 최영현
    • 생명과학회지
    • /
    • 제25권2호
    • /
    • pp.249-255
    • /
    • 2015
  • 오미자 종자에서 추출된 정유(Schisandrae Semen essential oil, SSeo)의 항암활성 및 작용 기전 해석을 위하여 U937 백혈병 세포를 대상으로 apoptosis 유도 여부를 조사하였다. SSeo 처리에 의한 U937 세포의 증식 억제는 apoptosis 유도와 연관성이 있음을 DAPI 염색을 통한 apoptotic body 출현의 증가, agarose gel 전기영도에 의한 DNA의 단편화 유도 및 flow cytometry 분석에 의한 Sub-G1기 세포 빈도의 증가로 확인하였다. SSeo 처리에 의한 apoptosis 유도에서 IAP family 단백질에 속하는 XIAP, cIAP-1 및 survivin의 발현 감소와 anti-apoptotic Bcl-2 단백질의 발현 저하, DR4 및 DR5의 발현 증가와 연관성이 있었다. SSeo 처리는 또한 Bid truncation, 미토콘드리아 기능 손상, caspases (-3, -8 and -9)의 활성화와 활성형 caspase-3의 기질 단백질인 PARP의 단편화를 동반하였다. 본 연구의 결과는 오미자 정유의 생화학적 항암기전 해석을 이해하고 향후 지속적인 연구를 위한 기초자료로서 활용될 수 있을 것으로 생각된다.

부인과질환 특이적 종양의 TLR4 매개성 apoptosis 유발에 관한 연구 (Toll-like Receptor 4-mediated Apoptotic Cell Death in Primary Isolated Human Cervical Cancers)

  • 원진영;홍윤경;박수경;김주헌;홍용근
    • 생명과학회지
    • /
    • 제28권6호
    • /
    • pp.718-725
    • /
    • 2018
  • Toll 유사수용체의 TLR4는 세포자연사(apoptosis)와 관련하여 세포의 생존과 증식에 영향을 미치는 것으로 알려져 있다. 본 연구에서는 TLR4의 활성이 부인과 질환 특이적 종양세포의 세포사멸기작에 어떠한 영향을 미치는지 살펴보았다. TLR4의 활성에 의한 세포자연사를 확인하기 위하여 부인암 조직(자궁경부암, 자궁내막암, 난소암)에서 종양세포를 분리하여 초대배양시스템을 구축하였고, lipopolysaccharide (LPS)에 의한 TLR4의 활성유도 과정에서 종양세포의 형태학적 변화를 살펴보았다. 또한, TLR4 매개성 세포사멸 기작을 확인하기 위하여 역전사 중합효소 연쇄반응(RT-PCR)을 통해 유전자 분석을 진행하였다. 연구 결과, 부인암의 초대배양세포에서 세포접촉저지(contact inhibition)현상이 감소되었고, 세포의 배가시간(doubling time)이 단축되어, 종양세포의 성장률 변화를 확인하였다(p<0.05). 자궁근육층(정상조직)의 초대배양세포에서는 민무늬근육 확인 인자인 ITGA5 (an alpha5 integrin marker)의 유전자 발현이 나타났으나, 자궁경부조직의 초대배양세포에서는 발현변화를 확인할 수 없었다. 종양세포의 유전자분석 결과에서 p53과 같은 종양억제인자의 발현이 유의적으로 증가한 반면(p<0.05), 세포사멸 신호기작과 관련하여 TLR4와 Caspase-3의 발현은 감소하였다(Caspase-3, p<0.05). LPS를 처리한 종양세포에서는 LPS 비처리군과 비교 시, TLR4의 발현증가와 함께 Caspase-3의 발현변화가 동반되었다. 이러한 결과들은 TLR4 매개성 apoptosis 유도가 종양세포의 증식억제에 중요한 영향을 미치는 것을 의미하며, TLR4 신호기작을 이용한 종양세포의 새로운 치료적 접근법을 제시할 것으로 기대한다.

Molecular characterization of a novel rice(Oryza sativa L.) MAP kinase, OsEDRl, its role in defense signaling pathway.

  • Kim, Jung-A;Jwa, Nam-Soo
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.82-83
    • /
    • 2003
  • Plants have evolved differently from animals having mobile activities. Thus, plants should have developed unique defense mechanisms against biotic/abiotic stresses to which plants are differently exposed, according to seasons. Most organisms have an conserved signaling network using mitogen-activated protein kinase (MAPK) cascade(s). The phenomenon implied that they are functionally very important in all organisms. In fact, they constitute one of the major components of signaling pathways involved in regulating a wide range of cellular activities from growth and development to cell death. Recently, complete MAPK cascade was first characterized in Arabidopsis from the receptor kinase (FLS2) through fellowing MEKKI -MKK4/MKK5-MPK3/MPK6-WRKY22/MRKY29 pathway. Whereas, MAPK cascade signaling pathway in monocot plant including rice (0ryza sativa L.), the most important of all food crops and an established monocot plant research model, MAPKinase kinase kinases (MAPKKK) of rice are the first upstream component of the MAPK cascade, but MAPKKK has been first identified and characterized in our lab and designated as, OsEDRl based on its homology with the Arabidopsis EDRI. The Arabidopsis EDRl was regarded as a negative regulator of defense response and the role of rice OsEDRl was analyzed. Transcriptional regulation of OsEDRl was detected under various stresses and immunoblotting analysis is going on to detect the level of OsEDRl protein in the mutants showing unique phenotype. We also introduced the constitutively active and the dominant negative forms of the OsEDRl for characterizing biological function.

  • PDF

Increased Hypermethylation of Glutathione S-Transferase P1, DNA-Binding Protein Inhibitor, Death Associated Protein Kinase and Paired Box Protein-5 Genes in Triple-Negative Breast Cancer Saudi Females

  • Hafez, Mohamed M.;Al-Shabanah, Othman A.;Al-Rejaie, Salim S.;Al-Harbi, Naif O.;Hassan, Zeinab K.;Alsheikh, Abdulmalik;Theyab, Abdurrahman I. Al;Aldelemy, Meshan L.;Sayed-Ahmed, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.541-549
    • /
    • 2015
  • Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) with higher metastatic rate and both local and systemic recurrence compared to non-TNBC. The generation of reactive oxygen species (ROS) secondary to oxidative stress is associated with DNA damage, chromosomal degradation and alterations of both hypermethylation and hypomethylation of DNA. This study concerns differential methylation of promoter regions in specific groups of genes in TNBC and non-TNBC Saudi females in an effort to understand whether epigenetic events might be involved in breast carcinogenesis, and whether they might be used as markers for Saudi BCs. Methylation of glutathione S-transferase P1 (GSTP1), T-cadherin (CDH13), Paired box protein 5 (PAX5), death associated protein kinase (DAPK), twist-related protein (TWIST), DNA-binding protein inhibitor (ID4), High In Normal-1 (HIN-1), cyclin-dependent kinase inhibitor 2A (p16), cyclin D2 and retinoic acid receptor-${\beta}$ ($RAR{\beta}1$) genes was analyzed by methylation specific polymerase chain reaction (MSP) in 200 archival formalin-fixed paraffin embedded BC tissues divided into 3 groups; benign breast tissues (20), TNBC (80) and non-TNBC (100). The relationships between methylation status, and clinical and pathological characteristics of patients and tumors were assessed. Higher frequencies of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 hypermethylation were found in TNBC than in non-TNBC. Hypermethylation of GSTP1, CDH13, ID4, DAPK, HIN-1 and PAX5 increased with tumor grade increasing. Other statistically significant correlations were identified with studied genes. Data from this study suggest that increased hypermethylation of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 genes in TNBC than in non-TNBC can act as useful biomarker for BCs in the Saudi population. The higher frequency of specific hypermethylated genes paralleling tumor grade, size and lymph node involvement suggests contributions to breast cancer initiation and progression.

Suppressors for Human Epidermal Growth Factor Receptor 2/4 (HER2/4): A New Family of Anti-Toxoplasmic Agents in ARPE-19 Cells

  • Kim, Yeong Hoon;Bhatt, Lokraj;Ahn, Hye-Jin;Yang, Zhaoshou;Lee, Won-Kyu;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제55권5호
    • /
    • pp.491-503
    • /
    • 2017
  • The effects of tyrosine kinase inhibitors (TKIs) were evaluated on growth inhibition of intracellular Toxoplasma gondii in host ARPE-19 cells. The number of tachyzoites per parasitophorous vacuolar membrane (PVM) was counted after treatment with TKIs. T. gondii protein expression was assessed by western blot. Immunofluorescence assay was performed using Programmed Cell Death 4 (PDCD4) and T. gondii GRA3 antibodies. The TKIs were divided into 3 groups; non-epidermal growth factor receptor (non-EGFR), anti-human EGFR 2 (anti-HER2), and anti-HER2/4 TKIs, respectively. Group I TKIs (nintedanib, AZD9291, and sunitinib) were unable to inhibit proliferation without destroying host cells. Group II TKIs (lapatinib, gefitinib, erlotinib, and AG1478) inhibited proliferation up to 98% equivalent to control pyrimethamine ($5{\mu}M$) at $20{\mu}M$ and higher, without affecting host cells. Group III TKIs (neratinib, dacomitinib, afatinib, and pelitinib) inhibited proliferation up to 98% equivalent to pyrimethamine at $1-5{\mu}M$, but host cells were destroyed at $10-20{\mu}M$. In Group I, TgHSP90 and SAG1 inhibitions were weak, and GRA3 expression was moderately inhibited. In Group II, TgHSP90 and SAG1 expressions seemed to be slightly enhanced, while GRA3 showed none to mild inhibition; however, AG1478 inhibited all proteins moderately. Protein expression was blocked in Group III, comparable to pyrimethamine. PDCD4 and GRA3 were well localized inside the nuclei in Group I, mildly disrupted in Group II, and were completely disrupted in Group III. This study suggests the possibility of a vital T. gondii TK having potential HER2/4 properties, thus anti-HER2/4 TKIs may inhibit intracellular parasite proliferation with minimal adverse effects on host cells.

Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway

  • Rahman, Md. Ataur;Bishayee, Kausik;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.119-128
    • /
    • 2016
  • Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-$3{\beta}$ activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.