• Title/Summary/Keyword: Deamination of 5-Fluorocytosine

Search Result 5, Processing Time 0.018 seconds

Distribution and Substrate Specificity of 5-fluorocytosine Deamiase in Bacteria (세균의 5-Fluorocytosine Deaminase의 분포와 기질 특이성)

  • 전홍기;김동완
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.361-366
    • /
    • 1985
  • Distribution and substrate specificity of 5-fluorocytosine deaminase were studied in various genera of bacteria. 5-Fluorocytosine deaminase was produced by various bacteria independent of genus and species and it catalyzed the deamination of cytosine, 5-fluorocytosine and 5-methylcytosine. Xanthomonas campestris IAM 1671 produced relatively large amount of 5-fluorocytosine deaminase. The composition of optimum culture medium for enzyme production wat glycerine 0.5%, peptone 1%, yeast extract 0.5%, NaCl 0.5% and the initial pH of the medium was 7.5. The highest enzyme formation was observed after 24 hours of cultivation In 500$m\ell$ shaking flask containing 90$m\ell$ of medium at 3$0^{\circ}C$ on a reciprocal shaker.

  • PDF

Characterization of cytosine deaminase with substrate specificity to 5-fluorocytosine (5-fluorocytosine에 기질특이성을 가지는 cytosine deaminase의 특성)

  • Yeeh, Yeehn;Park, Chan-Young
    • Korean Journal of Microbiology
    • /
    • v.26 no.3
    • /
    • pp.207-214
    • /
    • 1988
  • A cytosine deaminase from the cell-free extract of an isolate was examined after ethyl alcohol reactionation. The enzyme catalyzed the conversion of 5-fluorocytosine to 5-fluorouracil by the possession of specificity to the substrate. The optimum temperature and storage time on the stability of the enzyme were at below $50^{\circ}C$ and near 2 days in tris-HCl buffer. The maximum activity was also presented ar 9.0 in pH and $45^{\circ}C$ in temperature. The pHs and temperatures for the enzyme activity ranged from 8.5-9.5 and from 40-$50^{\circ}C$, respectively. the presence of $Ag^{+}, Hg^{2+}, Zn^{2+}$ in the reaction mixture resulted in the marked inhibition in the activity, but 1mM of $Fe^{3+}, K^{+}$, or $Na^{+}$ increased the enzyme activity. The enzyme preparation was vot affected by inhibitors used except N-ethylmaleimide of 1 and 10mM, and considerably activated by 1mM of pyrophosphate and 10mM of phosphate.

  • PDF

Purification and Properties of Intracellular Cytosine Deaminase from Chromobacterium violaceum YK 391

  • KIM , JUNG;YU, TAE-SHICK
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1182-1189
    • /
    • 2004
  • Cytosine deaminase (cytosine aminohydrolase, EC 3.5.4.1) stoichiometrically catalyzes the hydrolytic deamination of cytosine and 5-fluorocytosine to uracil and 5-fluorouracil, respectively. The intracellular cytosine deaminase from Chromobacterium violaceum YK 391 was purified to apparent homogeneity with 272.9-fold purification with an overall yield of $13.8\%$. The enzyme consisted of dimeric polypeptides of 63 kDa, and the total molecular mass was calculated to be approximately 126 kDa. Besides cytosine, the enzyme deaminated 5-fluorocytosine, cytidine, 6-azacytosine, and 5-methylcytosine, but not 5-azacytosine. Optimum pH and temperature for the enzyme reaction were 7.5 and $30^{\circ}C$, respectively. The enzyme was stable at pH 6.0 to 8.0, and at 30T for a week. About $70\%$ of the enzyme activity was retained at $60^{\circ}C$ for 5 min. The apparent $K_{m}$ values for cytosine, 5-fluorocytosine, and 5-methylcytosine were calculated to be 0.38 mM, 0.87 mM, and 2.32 mM, respectively. The enzyme activity was strongly inhibited by 1 mM $Hg^{2+},\;Zn^{2+},\;Cu^{2+},\;Pb^{2+},\;and\;Fe^{3+}$, and by o-phenanthroline, $\alpha,\;{\alpha}'$-dipyridyl, p-choromercuribenzoate, N-bromosuccinimide, and cWoramine­T. In addition, the enzyme activity was strongly inhibited by I mM 2-thiouracil, and weakly inhibited by 2-thiocytosine, or 5-azacytosine. Finally, intracellular and extracellular cytosine deaminases from Chromobacterium violaceum YK 391 were found to have a different optimum temperature, apparent $K_{m}$ value, and molecular mass.

Chemical Modification of Intracellular Cytosine Deaminase from Chromobacterium violaceum YK 391

  • Kim, Jung;Kim, Tae-Hyun;Yu, Tae-Shick
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.180-185
    • /
    • 2005
  • Cytosine deaminase (cytosine aminohydrolase, EC 3.5.4.1) stoichiometrically catalyzes the hydrolytic deamination of cytosine and 5-fluorocytosine to uracil and 5-fluorouracil, respectively. Amino acid residues located in or near the active sites of the intracellular cytosine deaminase from chromobacterium violaceum YK 391 were identified by chemical modification studies. The enzymic activity was completely inhibited by chemical modifiers, such as 1mM NBS, chloramine-T, $\rho-CMB,\;\rho-HMB$ and iodine, and was strongly inhibited by 1mM PMSF and pyridoxal 5'-phosphate. This chemical deactivation of the enzymic activity was reversed by a high concentration of cytosine. Furthermore, the deactivation of the enzymic activity by $\rho-CMB$ was also reversed by 1mM cysteine-HCI, DTT and 2-mercaptoethanol. These results suggested that cysteine, tryptophan and methionine residues might be located in or near the active sites of the enzyme, while serine and lysine were indirectly involved in the enzymic activity. The intracellular cytosine deaminase from C violaceum YK 391 was assumed to be a thiol enzyme.

Optimal Conditions for the Production of Intracellular Cytosine Deaminase from Chromobacterium violaceum YK 391. (Chromobacterium violaceum YK 391의 세포내 Cytosine Deaminase의 생성 최적조건)

  • Kim, Jung;Kim, Hyun-Soo;Yoo, Dae-Sik
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.367-372
    • /
    • 2002
  • Cytosine deaminase (cytosine aminohydrolase, EC 3.5.4.1) stoichiometrically catalyzes the hydrolytic deamination of cytosine and 5-fluorocytosine to uracil and 5-fluorouracil, respectively. Optimal medium compositions for production of cytosine deaminase from Chromobacterium violaceum YK 391 were 0.75% soluble starch, 1.5% peptone, 0.1% meat extract, 0.1% yeast extract, 0.01% NaCl, 0.01% $MgCl_2{\cdot}7H_2O$ and 0.05% $K_2HPO_4$. The optimal pH of medium and incubation temperature were 7.0 and $30^{\circ}C$, respectively. C. violaceum reached stationary phase after 30 hr, and produced a maximum cytosine deaminase (120 units/ml) after 72 h in batch culture.