• 제목/요약/키워드: Deamination

검색결과 49건 처리시간 0.017초

Chemical Modification of Intracellular Cytosine Deaminase from Chromobacterium violaceum YK 391

  • Kim, Jung;Kim, Tae-Hyun;Yu, Tae-Shick
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권3호
    • /
    • pp.180-185
    • /
    • 2005
  • Cytosine deaminase (cytosine aminohydrolase, EC 3.5.4.1) stoichiometrically catalyzes the hydrolytic deamination of cytosine and 5-fluorocytosine to uracil and 5-fluorouracil, respectively. Amino acid residues located in or near the active sites of the intracellular cytosine deaminase from chromobacterium violaceum YK 391 were identified by chemical modification studies. The enzymic activity was completely inhibited by chemical modifiers, such as 1mM NBS, chloramine-T, $\rho-CMB,\;\rho-HMB$ and iodine, and was strongly inhibited by 1mM PMSF and pyridoxal 5'-phosphate. This chemical deactivation of the enzymic activity was reversed by a high concentration of cytosine. Furthermore, the deactivation of the enzymic activity by $\rho-CMB$ was also reversed by 1mM cysteine-HCI, DTT and 2-mercaptoethanol. These results suggested that cysteine, tryptophan and methionine residues might be located in or near the active sites of the enzyme, while serine and lysine were indirectly involved in the enzymic activity. The intracellular cytosine deaminase from C violaceum YK 391 was assumed to be a thiol enzyme.

The Kinetic Parameters of Hafnia alvei Aspartase from pH Studies

  • Kim, Sung-Kun;Choi, Jung-Hoon;Yoon, Moon-Young
    • BMB Reports
    • /
    • 제28권3호
    • /
    • pp.204-209
    • /
    • 1995
  • The pH dependence of kinetic parameters in the amination direction of the aspartase from Hafnia alvei has been determined. The V/K for fumarate is bell shaped with pK values of 6.4 and 8.7. The maximum velocity for fumarate is also bell shaped with pK values of 7.2 and 9.1. The pH dependence of 1/K, for potassium (competitive inhibitor of ammonia) decreases at low pH with pK 7.6. Together with data [Yoon and Cook (1994) Korean J. Biochem. 27, 1-5] on the deamination direction of the aspartase, these results are consistent with two enzyme groups which are necessary for catalysis. An enzymatic group that must be deprotonated has been identified. Another enzyme group must be protonated for substrate binding. Both the general base and general acid group are in a protonation state opposite that in which they started when aspartate was bound. A proton is abstracted from C-3 of the monoanionic form of L-aspartate by an enzyme general base with, a pK of 6.3~6.6 in the absence and presence of $Mg^{2+}$ Ammonia is then expelled with the assistance of a general acid group giving $NH_{4+}$ as the product.

  • PDF

Regulation of Two Soluble Forms of Brain Glutamate Dehydrogenase Isoproteins by Leucine

  • Lee, Jong-Weon;Lee, Jong-Eun;Choi, Soo-Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제30권5호
    • /
    • pp.332-336
    • /
    • 1997
  • The stimulatory effects of leucine on the activities of two soluble forms of brain glutamate dehydrogenase isoproteins (GDH I and GDH II) have been studied at various conditions. There were significant differences between GDH I and GDH II in their sensitivities to the action of leucine. When the effects of varied leucine concentrations on GDH activities were studied in the direction of reductive amination of 2-oxoglutarate with NADPH as a coenzyme, a marked activation was observed for both isoproteins at leucine concentrations up to 10 mM, whereas both isoproteins showed activation to a lesser extent with NADH as a coenzyme. The stimulatory effects of leucine on GDH activities in the direction of the oxidative deamination of glutamate were also observed, but to a much lesser extent. Leucine relieved the inhibition of GDH I by GTP and this resulted in an increase in the apparent activation by leucine in the presence of GTP. 2-Oxoglutarate was found to give rise to high substrate inhibition and leucine significantly reduced the substrate inhibition in the presence of $200\;{\mu}M$ NADH. Thus, the effects of leucine might be composed of a direct effect on the enzyme together with a relief of high substrate inhibition.

  • PDF

Purification and Biochemical Characterization of Recombinant Alanine Dehydrogenase fvom Thermus caldophilux GK24

  • Bae, Jung-Don;Cho, Youn-Jeung;Kim, Doo-Il;Lee, Dae-Sil;Shin, Hyun-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.628-631
    • /
    • 2003
  • The recombinant alanine dehydrogenase (ADH) from E. coli containing Thermus caldophilus ADH was purified to homogeneity from a cell-free extract. The enzyme was purified 38-fold with a yield of 68% from the starting cell-free extract. The purified enzyme gave a single band in polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 45 kDa. The pH optimum was 8.0 for reductive amination of pyruvate and 12.0 for oxidative deamination of L-alanine. The enzyme was stable up to $70^{\circ}C$. The activity of the enzyme was inhibited by 1 mM $Zn^{2+}$, 20% hexane, and 20% $CHCl_3$. However, 10 mM $Mg^{2+}$ and 40% propanol had no effect on the enzyme activity. The Michaelis constants ($K_m$) for the substrates were $50\;\mu\textrm{M}$ for NADH, 0.2 mM for pyruvate, 39.4 mM for $NH_4+$, 2.6 mM for L-alanine, and 1.8 mM for $NAD^+$.

Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination

  • Jiang, Wei;Wang, Yali
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.146-154
    • /
    • 2020
  • With the advantages of biocatalytic method, enzymes have been excavated for the synthesis of chiral amino acids by the reductive amination of ketones, offering a promising way of producing pharmaceutical intermediates. In this work, a robust phenylalanine dehydrogenase (PheDH) with wide substrate spectrum and high catalytic efficiency was constructed through rational design and active-site-targeted, site-specific mutagenesis by using the parent enzyme from Bacillus halodurans. Active sites with bonding substrate and amino acid residues surrounding the substrate binding pocket, 49L-50G-51G, 74M,77K, 122G-123T-124D-125M, 275N, 305L and 308V of the PheDH, were identified. Noticeably, the new mutant PheDH (E113D-N276L) showed approximately 6.06-fold increment of kcat/Km in the oxidative deamination and more than 1.58-fold in the reductive amination compared to that of the wide type. Meanwhile, the PheDHs exhibit high capacity of accepting benzylic and aliphatic ketone substrates. The broad specificity, high catalytic efficiency and selectivity, along with excellent thermal stability, render these broad-spectrum enzymes ideal targets for further development with potential diagnostic reagent and pharmaceutical compounds applications.

Identificaiton of the dITP- and XTP-Hydrolyzing Protein from Escherichia coli

  • Chung, Ji-Hyung;Park, Hyun-Young;Lee, Jong-Ho;Jang, Yang-Soo
    • BMB Reports
    • /
    • 제35권4호
    • /
    • pp.403-408
    • /
    • 2002
  • A hypothetical 21.0 kDa protein (ORF O197) from Escherichia coli K-12 was cloned, purified, and characterized. The protein sequence of ORF O197(termed EcO197) shares a 33.5% identity with that of a novel NTPase from Methanococcus jannaschii. The EcO197 protein was purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration column. It hydrolyzed nucleoside triphosphates with an O6 atom-containing purine base to nucleoside monophosphate and pyrophosphate. The EcO197 protein had a strong preference for deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP), while it had little activity in the standard nucleoside triphosphates (dATP, dCTP, dGTP, and dTTP). These aberrant nucleotides can be produced by oxidative deamination from purine nucleotides in cells; they are potentially mutagenic. The mutation protection mechanisms are caused by the incorporation into DNA of unwelcome nucleotides that are formed spontaneously. The EcO197 protein may function to eliminate specifically damaged purine nucleotide that contains the 6-keto group. This protein appears to be the first eubacterial dITP-and XTP-hydrolyzing enzyme that has been identified.

Fungal and Plant Phenylalanine Ammonia-lyase

  • Hyun, Min-Woo;Yun, Yeo-Hong;Kim, Jun-Young;Kim, Seong-Hwan
    • Mycobiology
    • /
    • 제39권4호
    • /
    • pp.257-265
    • /
    • 2011
  • L-Phenylalanine is one of the essential amino acids that cannot be synthesized in mammals in adequate amounts to meet the requirements for protein synthesis. Fungi and plants are able to synthesize phenylalanine via the shikimic acid pathway. L-Phenylalanine, derived from the shikimic acid pathway, is used directly for protein synthesis in plants or metabolized through the phenylpropanoid pathway. This phenylpropanoid metabolism leads to the biosynthesis of a wide array of phenylpropanoid secondary products. The first step in this metabolic sequence involves the action of phenylalanine ammonialyase (PAL). The discovery of PAL enzyme in fungi and the detection of $^{14}CO_2$ production from $^{14}C$-ring-labeled phenylalanine and cinnamic acid demonstrated that certain fungi can degrade phenylalanine by a pathway involving an initial deamination to cinnamic acid, as happens in plants. In this review, we provide background information on PAL and a recent update on the presence of PAL genes in fungi.

5-fluorocytosine에 기질특이성을 가지는 cytosine deaminase의 특성 (Characterization of cytosine deaminase with substrate specificity to 5-fluorocytosine)

  • 이인;박찬영
    • 미생물학회지
    • /
    • 제26권3호
    • /
    • pp.207-214
    • /
    • 1988
  • A cytosine deaminase from the cell-free extract of an isolate was examined after ethyl alcohol reactionation. The enzyme catalyzed the conversion of 5-fluorocytosine to 5-fluorouracil by the possession of specificity to the substrate. The optimum temperature and storage time on the stability of the enzyme were at below $50^{\circ}C$ and near 2 days in tris-HCl buffer. The maximum activity was also presented ar 9.0 in pH and $45^{\circ}C$ in temperature. The pHs and temperatures for the enzyme activity ranged from 8.5-9.5 and from 40-$50^{\circ}C$, respectively. the presence of $Ag^{+}, Hg^{2+}, Zn^{2+}$ in the reaction mixture resulted in the marked inhibition in the activity, but 1mM of $Fe^{3+}, K^{+}$, or $Na^{+}$ increased the enzyme activity. The enzyme preparation was vot affected by inhibitors used except N-ethylmaleimide of 1 and 10mM, and considerably activated by 1mM of pyrophosphate and 10mM of phosphate.

  • PDF

Molecular characterization of lysine 6-dehydrogenase from Achromobacter denitrificans

  • Ruldeekulthamrong, Prakarn;Maeda, Sayaka;Kato, Shin-ichiro;Shinji, Nagata;Sittipraneed, Siriporn;Packdibamrung, Kanoktip;Misono, Haruo
    • BMB Reports
    • /
    • 제41권11호
    • /
    • pp.790-795
    • /
    • 2008
  • An inducible lysine 6-dehydrogenase (Lys 6-DH), which catalyzes the oxidative deamination of the 6-amino group of L-lysine in the presence of $NAD^+$, was purified to homogeneity from Achromobacter denitrificans, yielding a homodimeric protein of 80 kDa. The enzyme was specific for the substrate L-lysine and $NAD^+$ served as a cofactor. The dimeric enzyme associated into a hexamer in the presence of 10 mM L-lysine. The $K_m$ values for L-lysine and $NAD^+$ were 5.0 and 0.09 mM, respectively. The lys 6-dh gene was cloned and overexpressed in E. coli. The open reading frame was 1,107 nucleotides long and encoded a peptide containing 368 amino acids with 39,355 Da. The recombinant enzyme was purified to homogeneity and characterized. Enzyme activities and kinetic properties of the recombinant enzyme were almost the same as those of the endogenous enzyme obtained from A. denitrificans. Crystals of the enzyme were obtained using the hanging drop method.

Adenosine and Purine Nucleosides Prevent the Disruption of Mitochondrial Transmembrane Potential by Peroxynitrite in Rat Primary Astrocytes

  • Choi, Ji-Woong;Yoo, Byung-Kwon;Ryu, Mi-Kyoung;Choi, Min-Sik;Park, Gyu-Hwan;Ko, Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • 제28권7호
    • /
    • pp.810-815
    • /
    • 2005
  • Previously, we have shown that astrocytes deprived of glucose became highly vulnerable to peroxynitrite, and adenosine and its metabolites attenuated the gliotoxicity via the preservation of cellular ATP level. Here, we found that adenosine and related metabolites prevented the disruption of mitochondrial transmembrane potential (MTP) in glucose-deprived rat primary astrocytes exposed to 3-morpholinosydnonimine (SIN-1), a peroxynitrite releasing agent. Exposure to glucose deprivation and SIN-1(2h) significantly disrupted MTP in astrocytes, and adenosine prevented it in dose-dependent manner with an $EC_{50}\;of\;5.08{\mu}M$. Adenosine also partially prevented the cell death by myxothiazol, a well-known inhibitor of mitochondrial respiration. Blockade of adenosine deamination or intracellular transport with erythro-9-(-hydroxy-3-nonyl)adenosine (EHNA) or S-(4-nitrobenzyl)-6-thioinosine (NBTI), respectively, completely reversed the protective effect of adenosine. Other purine nucleos(t)ides including inosine, guanosine, ATP, ADP, AMP, ITP, and GTP also showed similar protective effects. This study indicates that adenosine and related purine nucleos(t)ides may protect astrocytes from peroxynitrite-induced mitochondrial dysfunction.