• Title/Summary/Keyword: Dead Reckoning Method

Search Result 78, Processing Time 0.021 seconds

수중로봇 위치추정을 위한 베이시안 필터 방법의 실현과 거리 측정 특성 분석 (Implementation of Bayesian Filter Method and Range Measurement Analysis for Underwater Robot Localization)

  • 노성우;고낙용;김태균
    • 로봇학회논문지
    • /
    • 제9권1호
    • /
    • pp.28-38
    • /
    • 2014
  • This paper verifies the performance of Extended Kalman Filter(EKF) and MCL(Monte Carlo Localization) approach to localization of an underwater vehicle through experiments. Especially, the experiments use acoustic range sensor whose measurement accuracy and uncertainty is not yet proved. Along with localization, the experiment also discloses the uncertainty features of the range measurement such as bias and variance. The proposed localization method rejects outlier range data and the experiment shows that outlier rejection improves localization performance. It is as expected that the proposed method doesn't yield as precise location as those methods which use high priced DVL(Doppler Velocity Log), IMU(Inertial Measurement Unit), and high accuracy range sensors. However, it is noticeable that the proposed method can achieve the accuracy which is affordable for correction of accumulated dead reckoning error, even though it uses only range data of low reliability and accuracy.

Experimental Results of Ship's Maneuvering Test Using GPS

  • Yoo, Yun-Ja;Hou, Dai-Jin;Hamada, Masaaki;Nakama, Yoshiyasu;Kouguchi, Nobuyoshi
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 Asia Navigation Conference
    • /
    • pp.49-55
    • /
    • 2006
  • Kinematic GPS provides quite good accuracy of position in cm level. Though K-GPS assures high precision measurement in cm level on the basis of an appreciable distance between a station and an observational point, but it has measurable distance restriction within 20 km from a reference station on land. So it is necessary to make out a simple and low-cost method to obtain accurate positioning information without distance restriction. In this paper, the velocity integration method to get the precise velocity information of ship is explained. Next two experimental results (Zig-zag maneuvering test and Williamson turn) as the ship's maneuvering test and also the experimental results of leaving and entering port as slow speed ship's movement were shown. In these experimental results, ship's course, speed and position are compared with those obtained by kinematic-GPS, velocity integration method and dead reckoning position using Gyro-compass and Doppler-log.

  • PDF

Stable Zero-Velocity Detection Method Regardless of Walking Speed for Foot-Mounted PDR

  • Cho, Seong Yun;Lee, Jae Hong;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권1호
    • /
    • pp.33-42
    • /
    • 2020
  • In Integration Approach (IA)-based Pedestrian Dead Reckoning (PDR), it is important to detect the exact zero-velocity of the foot with an Inertial Measurement Unit (IMU). By detecting zero-velocity during the stance phase of the foot touching the ground and executing Zero-velocity UPdaTe (ZUPT) at the exact time, stable navigation information can be provided by the PDR. When the pace is fast, however, it is not easy to accurately detect the zero-velocity because of the small stance phase interval and the large signal variance of the corresponding interval. Incorrect zero-velcity detection greatly causes navigation errors of IA-based PDR. In this paper, we propose a method to detect the zero-velocity stably even at high speed by novel buffering of IMU's output data and signal processing of the buffer. And we design a PDR based on this. By analyzing the performance of the proposed Zero-Velocity Detection (ZVD) algorithm and ZVD-based PDR through experiemnts, we confirm that the proposed method can provide accurate navigation information of pedestrians such as firefighters in the indoor space.

보행자의 영상정보를 이용한 인간추종 이동로봇의 위치 개선 (Position Improvement of a Human-Following Mobile Robot Using Image Information of Walking Human)

  • 진태석;이동희;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.398-405
    • /
    • 2005
  • The intelligent robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robots need to recognize their position and posture in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for a robot to estimate of his position by solving uncertainty for mobile robot navigation, as one of the best important problems. In this paper, we describe a method for the localization of a mobile robot using image information of a moving object. This method combines the observed position from dead-reckoning sensors and the estimated position from the images captured by a fixed camera to localize a mobile robot. Using a priori known path of a moving object in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a moving object and the estimated robot's position. Also, the control method is proposed to estimate position and direction between the walking human and the mobile robot, and the Kalman filter scheme is used for the estimation of the mobile robot localization. And its performance is verified by the computer simulation and the experiment.

다중 센서 기반의 실내외 측위 시스템에 관한 연구 (A Study on the Indoor/Outdoor Positioning System Based on Multiple Sensors)

  • 황치곤;;윤창표
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.643-644
    • /
    • 2018
  • 최근 실내 위치 추적시스템과 실외 위치 추적시스템은 다른 방식으로 운영되고 있다. 실내 측위 기법으로는 WiFi와 BLE beacon을 이용한 측위를 이용하고, 실외 측위는 GPS와 PDR을 이용한다. 본 논문에서는 이를 혼용하여 위치를 측정하기 위한 기기로 모바일기기 대표적으로 스마트폰을 기반으로 측정할 때, 실내인지 실외인지를 확인하여 실내에서 운영되는 기법을 이용하다가 실외로 이동할 때 GPS로 자동으로 변환 시켜주는 방식이 필요하다. 실내에서 GPS를 이용하였을 경우 층이나 공간의 구분이 어렵다. 이를 해결하기 위한 방식을 제안한다.

  • PDF

Gyro Signal Processing-based Stance Phase Detection Method in Foot Mounted PDR

  • Cho, Seong Yun;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권2호
    • /
    • pp.49-58
    • /
    • 2019
  • A number of techniques have been studied to estimate the position of pedestrians in indoor space. Among them, the technique of estimating the position using only the sensors attached to the body of the pedestrian without using the infrastructure is regarded as a very important technology for special purpose pedestrians such as the firefighters. In particular, it forms a research field under the name of Pedestrian Dead Reckoning (PDR). In this paper, we focus on a method for step detection which is essential when performing PDR using Inertial Measurement Unit (IMU) mounted on a shoe. Many researches have been done to detect the stance phase where the foot contacts the ground. Most of these methods, however, have a way to detect the specific size of the sensor signal and require thresholds for these methods. This has the difficulty of changing these thresholds if the user is different. To solve this problem, we propose a stance phase detection method that does not require any threshold value. It is expected that this result will make it easier to commercialize the technology because PDR can be implemented without user-dependent parameter setting.

듀얼 확장 칼만 필터를 이용한 쿼드로터 비행로봇 위치 정밀도 향상 알고리즘 개발 (Precise Positioning Algorithm Development for Quadrotor Flying Robots Using Dual Extended Kalman Filter)

  • 승지훈;이덕진;류지형;정길도
    • 제어로봇시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.158-163
    • /
    • 2013
  • The fusion of the GPS (Global Positioning System) and DR (Dead Reckoning) is widely used for position and latitude estimation of vehicles such as a mobile robot, aerial vehicle and marine vehicle. Among the many types of aerial vehicles, grater focus is given on the quad-rotor and accuracy of the position information is becoming more important. In order to exactly estimate the position information, we propose the fusion method of GPS and Gyroscope sensor using the DEKF (Dual Extended Kalman Filter). The DEKF has an advantage of simultaneously estimating state value and a parameter of dynamical system. It can also be used even if state value is not available. In order to analyze the performance of DEKF, the computer simulation for estimating the position, the velocity and the angle in a circle trajectory of quad-rotor was done. As it can be seen from the simulation results using own proposed DEKF instead of EKF on own fusion method in the navigation of a quad-rotor gave better performance values.

항적 데이터 학습을 통한 추천 항로 구성에 관한 연구 (Composing Recommended Route through Machine Learning of Navigational Data)

  • 김주성;정중식;이성용;이은석
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2016년도 춘계학술대회
    • /
    • pp.285-286
    • /
    • 2016
  • 해상교통관제센터에 의해 실시간으로 수집되는 선박의 항해 데이터를 바탕으로 선박 항적 패턴 인식을 수행하고 이를 바탕으로 항적 모델을 추출하여 사전에 선위를 예측하는 기법을 제안한다. 항적 데이터의 처리와 가공, 항적 모델링을 위하여 Support Vector Regression 알고리즘이 사용되었으며, 적정 파라미터 선정을 위하여 k-fold cross validation과 grid search가 사용되었다. 제안된 항적 데이터 모델링 기법을 통하여 사전에 선박의 선위를 예측하여 해상교통과제사의 의사결정을 지원하고자 한다.

  • PDF

무인모선기반 무인잠수정의 3차원 위치계측 기법에 관한 연구 (A Study on a 3-D Localization of a AUV Based on a Mother Ship)

  • 임종환;강철웅;김성근
    • 한국해양공학회지
    • /
    • 제19권2호
    • /
    • pp.74-81
    • /
    • 2005
  • A 3-D localization method of an autonomous underwater vehicle (AUV) has been developed, which can solve the limitations oj the conventional localization, such as LBL or SBL that reduces the flexibility and availability of the AUV. The system is composed of a mother ship (small unmanned marine prober) on the surface of the water and an unmanned underwater vehicle in the water. The mother ship is equipped with a digital compass and a GPS for position information, and an extended Kalman filter is used for position estimation. For the localization of the AUV, we used only non-inertial sensors, such as a digital compass, a pressure sensor, a clinometer, and ultrasonic sensors. From the orientation and velocity information, a priori position of the AUV is estimated by applying the dead reckoning method. Based on the extended Kalman filter algorithm, a posteriori position of the AUV is, then, updated by using the distance between the AUV and a mother ship on the surface of the water, together with the depth information from the pressure sensor.

보정벡터를 이용한 맵 매칭의 성능 향상 (Performance Improvement of Map Matching Using Compensation Vectors)

  • 안도랑;이동욱
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권2호
    • /
    • pp.97-103
    • /
    • 2005
  • Most car navigation systems(CNS) estimate the vehicle's location using global positioning system(GPS) or dead reckoning(DR) system. However, the estimated location has undesirable errors because of various noise sources such as unpredictable GPS noises. As a result, the measured position is not lying on the road, although the vehicle is known to be restricted on the road network. The purpose of map matching is to locate the vehicle's position on the road network where the vehicle is most likely to be positioned. In this paper, we analyze some general map matching algorithms first. Then, we propose a map matching method using compensation vectors to improve the performance of map matching. The proposed method calculates a compensation vector from the discrepancy between a measured position and an estimated position. The compensation vector and a newly measured position are to be used to determine the next estimation. To show the performance improvement of the map matching using compensation vectors, the real time map matching experiments are performed. The real road experiments demonstrate the effectiveness and applicability of the proposed map matching.