• 제목/요약/키워드: DeBERTa

검색결과 9건 처리시간 0.024초

KF-DeBERTa: 금융 도메인 특화 사전학습 언어모델 (KF-DeBERTa: Financial Domain-specific Pre-trained Language Model)

  • 전은광;김정대;송민상;유주현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.143-148
    • /
    • 2023
  • 본 논문에서는 금융 도메인 특화 사전학습 언어모델인 KF-DeBERTa(Korean Finance DeBERTa)를 제안한다. KF-DeBERTa는 대규모의 금융 말뭉치를 기반으로 학습하였으며, Transformer 아키텍처와 DeBERTa의 특징을 기반으로 구성되었다. 범용 및 금융 도메인에 대한 평가에서 KF-DeBERTa는 기존 언어모델들에 비해 상당히 높은 성능을 보였다. 특히, 금융 도메인에서의 성능은 매우 두드러졌으며, 범용 도메인에서도 다른 모델들을 상회하는 성능을 나타냈다. KF-DeBERTa는 모델 크기 대비 높은 성능 효율성을 보여주었고, 앞으로 금융 도메인에서의 활용도가 기대된다.

  • PDF

KorSciDeBERTa: 한국어 과학기술 분야를 위한 DeBERTa 기반 사전학습 언어모델 (KorSciDeBERTa: A Pre-trained Language Model Based on DeBERTa for Korean Science and Technology Domains)

  • 김성찬;김경민;김은희;이민호;이승우;최명석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.704-706
    • /
    • 2023
  • 이 논문에서는 과학기술분야 특화 한국어 사전학습 언어모델인 KorSciDeBERTa를 소개한다. DeBERTa Base 모델을 기반으로 약 146GB의 한국어 논문, 특허 및 보고서 등을 학습하였으며 모델의 총 파라미터의 수는 180M이다. 논문의 연구분야 분류 태스크로 성능을 평가하여 사전학습모델의 유용성을 평가하였다. 구축된 사전학습 언어모델은 한국어 과학기술 분야의 여러 자연어처리 태스크의 성능향상에 활용될 것으로 기대된다.

  • PDF

검색 재순위화를 위한 가중치 반영 딥러닝 학습 모델 (Search Re-ranking Through Weighted Deep Learning Model)

  • 안기택;최우석;박준용;박정민;이경순
    • 정보처리학회 논문지
    • /
    • 제13권5호
    • /
    • pp.221-226
    • /
    • 2024
  • 정보검색에서 질의는 다양한 유형이 존재한다. 추상적인 질의부터 구체적인 키워드를 포함하는 질의까지 다양한 형태로 구성되어 있어서 사용자의 요구에 정확한 결과 도출은 어려운 과제이다. 또한 검색시스템이 오타, 다국어, 코드와 같은 다양한 요소를 포함하는 질의를 다뤄야 하는 특징이 존재한다. 본 연구에서는 질의 유형을 분석하고, 이에 따라 딥러닝 기반 재순위화의 적용 여부를 결정하는 방법을 제안한다. 최근 연구에서 높은 성능을 보인 딥러닝 모델인 DeBERTa를 이용하여 질의에 대한 적합 문서의 학습을 통해 재순위화를 수행한다. 제안 방법의 유효성을 평가하기 위해 국제정보검색 평가대회인 TREC 2023의 상품 검색 트랙(Product Search Track) 테스트컬렉션을 이용하여 실험을 하였다. 실험 결과에 대한 정규화된 할인누적이득(NDCG) 성능측정 비교에서 제안 방법이 정보검색 기본 모델인 BM25 에 비해 질의 오류 처리를 통한 검색, 잠정적 적합성피드백을 통한 상품제목 기반 질의확장과 질의유형에 따른 재순위화에서 0.7810으로 BM25 대비 10.48% 향상을 보였다.

Transmission Fiber Chromatic Dispersion Dependence on Temperature: Implications on 40 Gb/s Performance

  • Andre, Paulo S.;Teixeira, Antonio L.;Pinto, Armando N.;Pellegrino, Lara P.;Neto, Berta B.;Rocha, Jose F.;Pinto, Joao L.;Monteiro, Paulo N.
    • ETRI Journal
    • /
    • 제28권2호
    • /
    • pp.257-259
    • /
    • 2006
  • In this letter, we will evaluate the performance degradation of a 40 km high-speed (40 Gb/s) optical system, induced by optical fiber variations of the chromatic dispersion induced by temperature changes. The chromatic dispersion temperature sensitivity will be estimated based on the signal quality parameters.

  • PDF

개인정보 비식별화를 위한 개체명 유형 재정의와 학습데이터 생성 방법 (Re-defining Named Entity Type for Personal Information De-identification and A Generation method of Training Data)

  • 최재훈;조상현;김민호;권혁철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.206-208
    • /
    • 2022
  • 최근 빅데이터 산업이 큰 폭으로 발전하는 만큼 개인정보 유출로 인한 사생활 침해 문제의 관심도 높아졌다. 자연어 처리 분야에서는 이를 개체명 인식을 통해 자동화하려는 시도들이 있었다. 본 논문에서는 한국어 위키피디아 문서의 본문에서 비식별화 정보를 지닌 문장을 식별해 반자동으로 개체명 인식 데이터를 구축한다. 이는 범용적인 개체명 인식 데이터에 반해 비식별화 대상이 아닌 정보에 대해 학습되는 비용을 줄일 수 있다. 또한, 비식별화 정보를 분류하기 위해 규칙 및 통계 기반의 추가적인 시스템을 최소화할 수 있는 장점을 가진다. 본 논문에서 제안하는 개체명 인식 데이터는 총 12개의 범주로 분류하며 의료 기록, 가족 관계와 같은 비식별화 대상이 되는 정보를 포함한다. 생성된 데이터셋을 이용한 실험에서 KoELECTRA는 0.87796, RoBERTa는 0.88575의 성능을 보였다.

  • PDF

트랜스포머 기반 MBTI 성격 유형 분류 연구 : 소셜 네트워크 서비스 데이터를 중심으로 (Research on Transformer-Based Approaches for MBTI Classification Using Social Network Service Data)

  • 정재준;임희석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.529-532
    • /
    • 2023
  • 본 논문은 소셜 네트워크 이용자의 텍스트 데이터를 대상으로, 트랜스포머 계열의 언어모델을 전이학습해 이용자의 MBTI 성격 유형을 분류한 국내 첫 연구이다. Kaggle MBTI Dataset을 대상으로 RoBERTa Distill, DeBERTa-V3 등의 사전 학습모델로 전이학습을 해, MBTI E/I, N/S, T/F, J/P 네 유형에 대한 분류의 평균 정확도는 87.9181, 평균 F-1 Score는 87.58를 도출했다. 해외 연구의 State-of-the-art보다 네 유형에 대한 F1-Score 표준편차를 50.1% 낮춰, 유형별 더 고른 분류 성과를 보였다. 또, Twitter, Reddit과 같은 글로벌 소셜 네트워크 서비스의 텍스트 데이터를 추가로 분류, 트랜스포머 기반의 MBTI 분류 방법론을 확장했다.

  • PDF

NLP 알고리즘을 활용한 A.I 보이스피싱 탐지 솔루션 (A.I voice phishing detection solution using NLP Algorithms)

  • 김태경;박은주;박지원;한아림
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.1045-1046
    • /
    • 2023
  • 본 논문은 디지털 소외계층과 사회적 약자를 고려한 보이스피싱 예방 솔루션을 제안한다. 통화 내용을 AWS Transcribe를 활용한 STT와 NLP 알고리즘을 사용해 실시간으로 보이스피싱 위험도를 파악하고 결과를 사용자에게 전달하도록 한다. NLP 알고리즘은 KoBIGBIRD와 DeBERTa 모델 각각을 커스터마이즈하여 보이스피싱 탐지에 적절하게 파인튜닝 했다. 이후, 성능과 인퍼런스를 비교하여 더 좋은 성능을 보인 KoBIGBIRD 모델로 보이스피싱 탐지를 수행한다.

AKARI-NEP : EFFECTS OF AGN PRESENCE ON SFR ESTIMATES OF GALAXIES

  • Marchetti, L.;Feltre, A.;Berta, S.;Baronchelli, I.;Serjeant, S.;Vaccari, M.;Bulgarella, D.;Karouzos, M.;Murata, K.;Oi, N.;Pearson, C.;Rodighiero, G.;Segdwick, C.;White, G.J.
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.239-244
    • /
    • 2017
  • How does the presence of an AGN influence the total SFR estimates of galaxies and change their distribution with respect to the Galaxy Main Sequence? To contribute to solving this question, we study a sample of 1133 sources detected in the North Ecliptic Pole field (NEP) by AKARI and Herschel. We create a multi-wavelength dataset for these galaxies and we fit their multi-wavelength Spectral Energy Distribution (SED) using the whole spectral regime (from 0.1 to $500{\mu}m$). We perform the fit using three procedures: LePhare and two optimised codes for identifying AGN tracers from the SED analysis. In this work we present an overview of the comparison between the estimates of the Infrared bolometric luminosities (between 8 and $1000{\mu}m$) and the AGN fractions obtained exploiting these different procedures. In particular, by estimating the AGN contribution in four different wavelength ranges ($5-40{\mu}m$, $10-20{\mu}m$, $20-40{\mu}m$ and $8-1000{\mu}m$) we show how the presence of an AGN affects the PAH emission by suppressing the ratio $\frac{L_{8{\mu}m}}{L_{4.5{\mu}m}}$ as a function of the considered wavelength range.

KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용 (KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain)

  • 김동규;이동욱;박장원;오성우;권성준;이인용;최동원
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.191-206
    • /
    • 2022
  • 대량의 말뭉치를 비지도 방식으로 학습하여 자연어 지식을 획득할 수 있는 사전학습 언어모델(Pre-trained Language Model)은 최근 자연어 처리 모델 개발에 있어 매우 일반적인 요소이다. 하지만, 여타 기계학습 방식의 성격과 동일하게 사전학습 언어모델 또한 학습 단계에 사용된 자연어 말뭉치의 특성으로부터 영향을 받으며, 이후 사전학습 언어모델이 실제 활용되는 응용단계 태스크(Downstream task)가 적용되는 도메인에 따라 최종 모델 성능에서 큰 차이를 보인다. 이와 같은 이유로, 법률, 의료 등 다양한 분야에서 사전학습 언어모델을 최적화된 방식으로 활용하기 위해 각 도메인에 특화된 사전학습 언어모델을 학습시킬 수 있는 방법론에 관한 연구가 매우 중요한 방향으로 대두되고 있다. 본 연구에서는 금융(Finance) 도메인에서 다양한 자연어 처리 기반 서비스 개발에 활용될 수 있는 금융 특화 사전학습 언어모델의 학습 과정 및 그 응용 방식에 대해 논한다. 금융 도메인 지식을 보유한 언어모델의 사전학습을 위해 경제 뉴스, 금융 상품 설명서 등으로 구성된 금융 특화 말뭉치가 사용되었으며, 학습된 언어 모델의 금융 지식을 정량적으로 평가하기 위해 토픽 분류, 감성 분류, 질의 응답의 세 종류 자연어 처리 데이터셋에서의 모델 성능을 측정하였다. 금융 도메인 말뭉치를 기반으로 사전 학습된 KB-BERT는 KoELECTRA, KLUE-RoBERTa 등 State-of-the-art 한국어 사전학습 언어 모델과 비교하여 일반적인 언어 지식을 요구하는 범용 벤치마크 데이터셋에서 견줄 만한 성능을 보였으며, 문제 해결에 있어 금융 관련 지식을 요구하는 금융 특화 데이터셋에서는 비교대상 모델을 뛰어넘는 성능을 보였다.