The underwater explosion shock test is performed for the evaluation of the shock-resistant capability which is a very critical factor considering the survivability of the battle ship. Some measured signals have impulsive noise and gaussian white noise because of the unstable power supply system and the transient movement of cables during the underwater explosion shock test. The advanced shock signal analysis method which remove the noise of measured signal using the threshold policy of the median filter and the orthogonal wavelet coefficients are proposed. It is verified that the signal-to-noise ratio was improved about 30㏈ by the numerical simulation.
The end-milling force behaviour is very complex and it is related to a de-noising phenomenon, so it is very difficult to detect and diagnose this static cutting force phenomenon. This paper presents a new method of filtering of end-milling force in end-milling operation using filter bank technique, based on the wavelet transform. In this paper by comparing the history of end-milling force using wavelet filtering the fundamental end-milling property of the wavelet transform is well reviewed and analyzed. This result of wavelet transform using filter bank shows the possible static prediction of end-milling force with severe dynamic properties such as chatter in end-milling operation.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권2호
/
pp.412-434
/
2023
This study discusses the high-order diffusion method in the wavelet domain. It aims to improve the edge protection capability of the high-order diffusion method using wavelet coefficients that can reflect image information. During the first step of the proposed diffusion method, the wavelet packet decomposition is a more refined decomposition method that can extract the texture and structure information of the image at different resolution levels. The high-frequency wavelet coefficients are then used to construct the edge detection function. Subsequently, because accurate wavelet coefficients can more accurately reflect the edges and details of the image information, by introducing the idea of state weight, a scheme for recovering wavelet coefficients is proposed. Finally, the edge detection function is constructed by the module of the wavelet coefficients to guide high-order diffusion, the denoised image is obtained. The experimental results showed that the method presented in this study improves the denoising ability of the high-order diffusion model, and the edge protection index (SSIM) outperforms the main methods, including the block matching and 3D collaborative filtering (BM3D) and the deep learning-based image processing methods. For images with rich textural details, the present method improves the clarity of the obtained images and the completeness of the edges, demonstrating its advantages in denoising and edge protection.
Ship detection in synthetic aperture radar(SAR)imagery has long been an active research topic and has many applications. In this paper,we propose an efficient method for detecting ships from SAR imagery using filtering. This method exploits ship masking using a median filter that considers maximum ship sizes and detects ships from the reference image, to which a Non-Local means (NL-means) filter is applied for speckle de-noising and a differential image created from the difference between the reference image and the median filtered image. As the pixels of the ship in the SAR imagery have sufficiently higher values than the surrounding sea, the ship detection process is composed primarily of filtering based on this characteristic. The performance test for this method is validated using KOMPSAT-5 (Korea Multi-Purpose Satellite-5) SAR imagery. According to the accuracy assessment, the overall accuracy of the region that does not include land is 76.79%, and user accuracy is 71.31%. It is demonstrated that the proposed detection method is suitable to detect ships in SAR imagery and enables us to detect ships more easily and efficiently.
In this study, we proposed a method for electroencephalogram (EEG) classification using invariant CSP at special channels for improving the accuracy of classification. Based on the naive EEG signals from left and right hand movement experiment, the noises of contaminated data set should be eliminate and the proposed method can deal with the de-noising of data set. The considering data set are collected from the special channels for right and left hand movements around the motor cortex area. The proposed method is based on the fit of the adjusted parameter to decline the affect of invariant parts in raw signals and can increase the classification accuracy. We have run the simulation for hundreds time for each parameter and get averaged value to get the last result for comparison. The experimental results show the accuracy is improved more than the original method, the highest result reach to 89.74%.
With the urbanization in recent years, the power line interference noise in electromagnetic signal is increasing day by day, and has gradually become an unavoidable component of noises in magnetotelluric signal detection. Therefore, a kind of power line interference noise elimination method based on independent component analysis in wavelet domain for magnetotelluric signal is put forward in this paper. The method first uses wavelet decomposition to change single-channel signal into multi-channel signal, and then takes advantage of blind source separation principle of independent component analysis to eliminate power line interference noise. There is no need to choose the layer number of wavelet decomposition and the wavelet base of wavelet decomposition according to the observed signal. On the treatment effect, it is better than the previous power line interference removal method based on independent component analysis. Through the de-noising processing to actual magnetotelluric measuring data, it is shown that this method makes both the apparent resistivity curve near 50 Hz and the phase curve near 50 Hz become smoother and steadier than before processing, i.e., it effectively eliminates the power line interference noise.
This paper presents a novel time-domain method for the identification of plastic rotations and stiffness parameters of single-bay frames with nonlinear plastic hinges. Each plastic hinge is modelled as a pseudo-semi-rigid connection with nonlinear hysteretic moment-curvature characteristics at an element end. Through the comparison of the identified end rotations of members that are connected together, the plastic rotation that furnishes information of the locations and plasticity degrees of plastic hinges can be identified. The force consideration of the frame members may be used to relate the stiffness parameters to the elastic rotations and the excitation. The damped-least-squares method and damped-and-weighted-least-squares method are adopted to estimate the stiffness parameters of frames. A noise-removal strategy employing a de-noising technique based on wavelet packets with a smoothing process is used to filter out the noise for the parameter estimation. The numerical examples show that the proposed method can identify the plastic rotations and the stiffness parameters using measurements with reasonable level of noise. The unknown excitation can also be estimated with acceptable accuracy. The advantages and disadvantages of both parameter estimation methods are discussed.
본 논문에서는 eigenvoice 방식에 기반하여 다양한 잡음 환경에 강인한 고속 화자 적응 방법을 제안하였다. 제안된 방법은 잡음 제거 기술과 환경 군집화 방법을 기반으로 한다. 그러나, 잡음 제거 기술을 통해 잡음을 제거한 후에도 여전히 잔여 잡음이 존재하므로 비음성 구간의 켑스트럼 평균을 사용하여 잡음 환경별로 화자 적응 데이터를 분류한 후 각각의 환경별로 환경 모델을 구성한다. 이러한 환경 군집화를 적응데이터에 대해 구성한 후 테스트 음성이 입력되면 군집화된 모델 중에서 인식 데이터와 가장 유사한 복수의 환경별 군집화된 화자 적응 모델을 구한 후 이들의 가중함을 통해 화자 적응을 수행하는 방법이다. 제안된 방법은 적응 및 평가를 통해 화자 독립 모델을 사용한 경우에 비해 $40{\sim}59%$ 인식 오류 감소율을 얻었다.
Zhang, Linna;Chen, Shiming;Cen, Yigang;Cen, Yi;Wang, Hengyou;Zeng, Ming
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권12호
/
pp.6043-6062
/
2019
Low-rank matrix decomposition has shown its capability in many applications such as image in-painting, de-noising, background reconstruction and defect detection etc. In this paper, we consider the texture background of rail track images and the sparse foreground of the defects to construct a low-rank matrix decomposition model with block sparsity for defect inspection of rail tracks, which jointly minimizes the nuclear norm and the 2-1 norm. Similar to ADM, an alternative method is proposed in this study to solve the optimization problem. After image decomposition, the defect areas in the resulting low-rank image will form dark stripes that horizontally cross the entire image, indicating the preciselocations of the defects. Finally, a two-stage defect extraction method is proposed to locate the defect areas. The experimental results of the two datasets show that our algorithm achieved better performance compared with other methods.
현대사회는 휴대폰, 컴퓨터, 멀티미디어 등의 보급으로 인하여, 영상처리 기술을 필요로 하며, 영상 신호처리는 여러 영역에서 응용되고 있다. 그러나 영상은 여러 원인으로 임펄스 잡음에 훼손되며, 임펄스 잡음에 훼손된 영상을 복원하는데 대표적인 방법에는 메디안 필터가 있지만, 메디안 필터는 에지 영역에서 오류를 나타내어 영상의 질을 저하시킨다. 따라서 본 논문에서는 임펄스 잡음제거를 위해 마스크를 다중 분할하여 처리하는 평균 필터 알고리즘을 제안하였다. 시뮬레이션 결과, 제안한 방법은 기존의 방법들에 비해 우수한 잡음제거 특성을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.