• 제목/요약/키워드: De novo development

검색결과 93건 처리시간 0.026초

Genome Sequencing and Genome-Wide Identification of Carbohydrate-Active Enzymes (CAZymes) in the White Rot Fungus Flammulina fennae

  • Lee, Chang-Soo;Kong, Won-Sik;Park, Young-Jin
    • 한국미생물·생명공학회지
    • /
    • 제46권3호
    • /
    • pp.300-312
    • /
    • 2018
  • Whole-genome sequencing of the wood-rotting fungus, Flammulina fennae, was carried out to identify carbohydrate-active enzymes (CAZymes). De novo genome assembly (31 kmer) of short reads by next-generation sequencing revealed a total genome length of 32,423,623 base pairs (39% GC). A total of 11,591 gene models in the assembled genome sequence of F. fennae were predicted by ab initio gene prediction using the AUGUSTUS tool. In a genome-wide comparison, 6,715 orthologous groups shared at least one gene with F. fennae and 10,667 (92%) of 11,591 genes for F. fennae proteins had orthologs among the Dikarya. Additionally, F. fennae contained 23 species-specific genes, of which 16 were paralogous. CAZyme identification and annotation revealed 513 CAZymes, including 82 auxiliary activities, 220 glycoside hydrolases, 85 glycosyltransferases, 20 polysaccharide lyases, 57 carbohydrate esterases, and 45 carbohydrate binding-modules in the F. fennae genome. The genome information of F. fennae increases the understanding of this basidiomycete fungus. CAZyme gene information will be useful for detailed studies of lignocellulosic biomass degradation for biotechnological and industrial applications.

Sequence to Structure Approach of Estrogen Receptor Alpha and Ligand Interactions

  • Chamkasem, Aekkapot;Toniti, Waraphan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2161-2166
    • /
    • 2015
  • Estrogen receptors (ERs) are steroid receptors located in the cytoplasm and on the nuclear membrane. The sequence similarities of human $ER{\alpha}$, mouse $ER{\alpha}$, rat $ER{\alpha}$, dog $ER{\alpha}$, and cat $ER{\alpha}$ are above 90%, but structures of $ER{\alpha}$ may different among species. Estrogen can be agonist and antagonist depending on its target organs. This hormone play roles in several diseases including breast cancer. There are variety of the relative binding affinity (RBA) of ER and estrogen species in comparison to $17{\beta}-estradiol$ (E2), which is a natural ligand of both $ER{\alpha}$ and $ER{\beta}$. The RBA of the estrogen species are as following: diethyl stilbestrol (DES) > hexestrol > dienestrol > $17{\beta}-estradiol$ (E2) > 17- estradiol > moxestrol > estriol (E3) >4-OH estradiol > estrone-3-sulfate. Estrogen mimetic drugs, selective estrogen receptor modulators (SERMs), have been used as hormonal therapy for ER positive breast cancer and postmenopausal osteoporosis. In the postgenomic era, in silico models have become effective tools for modern drug discovery. These provide three dimensional structures of many transmembrane receptors and enzymes, which are important targets of de novo drug development. The estimated inhibition constants (Ki) from computational model have been used as a screening procedure before in vitro and in vivo studies.

Genetic Syndromes Associated with Craniosynostosis

  • Ko, Jung Min
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권3호
    • /
    • pp.187-191
    • /
    • 2016
  • Craniosynostosis is defined as the premature fusion of one or more of the cranial sutures. It leads not only to secondary distortion of skull shape but to various complications including neurologic, ophthalmic and respiratory dysfunction. Craniosynostosis is very heterogeneous in terms of its causes, presentation, and management. Both environmental factors and genetic factors are associated with development of craniosynostosis. Nonsyndromic craniosynostosis accounts for more than 70% of all cases. Syndromic craniosynostosis with a certain genetic cause is more likely to involve multiple sutures or bilateral coronal sutures. FGFR2, FGFR3, FGFR1, TWIST1 and EFNB1 genes are major causative genes of genetic syndromes associated with craniosynostosis. Although most of syndromic craniosynostosis show autosomal dominant inheritance, approximately half of patients are de novo cases. Apert syndrome, Pfeiffer syndrome, Crouzon syndrome, and Antley-Bixler syndrome are related to mutations in FGFR family (especially in FGFR2), and mutations in FGFRs can be overlapped between different syndromes. Saethre-Chotzen syndrome, Muenke syndrome, and craniofrontonasal syndrome are representative disorders showing isolated coronal suture involvement. Compared to the other types of craniosynostosis, single gene mutations can be more frequently detected, in one-third of coronal synostosis patients. Molecular diagnosis can be helpful to provide adequate genetic counseling and guidance for patients with syndromic craniosynostosis.

Identification of a novel mutation in the CHD7 gene in a patient with CHARGE syndrome

  • Kim, Yeonkyung;Lee, Ho-Seok;Yu, Jung-Seok;Ahn, Kangmo;Ki, Chang-Seok;Kim, Jihyun
    • Clinical and Experimental Pediatrics
    • /
    • 제57권1호
    • /
    • pp.46-49
    • /
    • 2014
  • CHARGE syndrome has been estimated to occur in 1:10,000 births worldwide and shows various clinical manifestations. It is a genetic disorder characterized by a specific and a recognizable pattern of anomalies. The major clinical features are ocular coloboma, heart malformations, atresia of the choanae, growth retardation, genital hypoplasia, and ear abnormalities. The chromodomain helicase DNA-binding protein 7 (CHD7) gene, located on chromosome 8q12.1, causes CHARGE syndrome. The CHD7 protein is an adenosine triphosphate (ATP)-dependent chromatin remodeling protein. A total of 67% of patients clinically diagnosed with CHARGE syndrome have CHD7 mutations. Five hundred twenty-eight pathogenic and unique CHD7 alterations have been identified so far. We describe a patient with a CHARGE syndrome diagnosis who carried a novel de novo mutation, a c.3896T>C (p. leu1299Pro) missense mutation, in the CHD7 gene. This finding will provide more information for genetic counseling and expand our understanding of the pathogenesis and development of CHARGE syndrome.

Nonstructural Protein 5B of Hepatitis C Virus

  • Lee, Jong-Ho;Nam, In Young;Myung, Heejoon
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.330-336
    • /
    • 2006
  • Since its identification in 1989, hepatitis C virus has been the subject of extensive research. The biology of the virus and the development of antiviral drugs are closely related. The RNA polymerase activity of nonstructural protein 5B was first demonstrated in 1996. NS5B is believed to localize to the perinuclear region, forming a replicase complex with other viral proteins. It has a typical polymerase structure with thumb, palm, and finger domains encircling the active site. A de novo replication initiation mechanism has been suggested. To date, many small molecule inhibitors are known including nucleoside analogues, non-nucleoside analogues, and pyrophosphate mimics. NS5B interacts with other viral proteins such as core, NS3, 4A, 4B, and 5A. The helicase activity of NS3 seems necessary for RNA strand unwinding during replication, with other nonstructural proteins performing modulatory roles. Cellular proteins interacting with NS5B include VAMP-associated proteins, heIF4AII, hPLIC1, nucleolin, PRK2, ${\alpha}$-actinin, and p68 helicase. The interactions of NS5B with these proteins might play roles in cellular trafficking, signal transduction, and RNA polymerization, as well as the regulation of replication/translation processes.

Study on life span extension efficacy by Korean Red Ginseng

  • Lee, Joon-Hee;Choi, Sun-Hye;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제31권4호
    • /
    • pp.210-216
    • /
    • 2007
  • The backbone structure of ginsenosides, active ingredients of Panax ginseng, is similar with that of sterol, especially cholesterol. Caenorhabditis elegans (c. elegans) is one of free living nematodes and is well-established animal model for biochemical and genetic studies. C. elegans cannot synthesize de novo cholesterol, although cholesterol is essential requirement for its growth and development. In the present study, we investigated the effects of Korean red ginseng total extract (KRGE), ginseng total saponins (GTS) on life span of C. elegans in cholesterol-deprived and -fed medium. Cholesterol deprivation caused damages on life span of worms throughout F1 to F3 generations. KRGE or GTS supplement to cholesterol-deprived medium restored the life span of worms as much as cholesterol alone-fed medium. In study to identify which ginsenosides are responsible for life span restoring effects of KRGE, we found that ginsenoside Rc supplement not only restored life span of worms grown in cholesterol-deprived medium but also prolonged life span of worms grown in cholesterol-fed medium. These results show a possibility that ginsenosides could be utilized by C. elegans as a sterol substitute and further indicate that ginsenoside Rc is the effective component of Korean red ginseng that prolongs the life span of C. elegans.

뇌전증 유전자 패널 검사를 통해 확인된 PCDH 19 연관 뇌전증 1예 (A Case of Epilepsy with Mental Retardation Limited to Females in a Patient with PCDH19 Mutation Confirmed using an Epilepsy Gene Panel)

  • 김효진;유희준
    • 대한유전성대사질환학회지
    • /
    • 제19권1호
    • /
    • pp.26-30
    • /
    • 2019
  • EFMR은 뇌전증을 보이는 여자 환자에게서 지적장애가 동반된 것이 특징적인데 이들 중 PCDH19 변이와 연관이 있는 경우를 PCDH19 연관성 뇌전증으로 분류하였다. PCDH19 연관성 뇌전증은 조기에 발병하며 열에 민감하고 잘 조절되지 않는 군집발작을 보이는 것이 특징이다. 발달장애나 인지 및 행동장애를 동반할 수 있으며 정상에서부터 중증까지 다양하게 나타날 수 있다. 최근 이러한 질환에서 유전적 원인을 찾고자 하는 노력으로 뇌전증 유전자 패널을 이용하는 경우가 많아지고 있다. 저자들은 EFMR 환자에서 뇌전증 유전자 패널을 이용한 유전자 검사상 PCDH19 돌연변이가 확인된 사례를 경험하였기에 보고하는 바이다.

  • PDF

Lactobacillus salivarius MG242의 열 전처리시 생존율 증진 및 항 캔디다 효과 (Improved Cell Viability and Anti-Candida Activity of Probiotic Lactobacillus salivarius MG242 by Heat Adaptation)

  • 강창호;김용경;신유진;백남수;소재성
    • Journal of Dairy Science and Biotechnology
    • /
    • 제37권1호
    • /
    • pp.49-56
    • /
    • 2019
  • Vulvovaginal candidiasis is a major urogenital infection in women. Lactobacilli are important in maintaining vaginal health. In the present study, the effect of heat adaptation at $47{\sim}52^{\circ}C$ prior to heat stress at $60^{\circ}C$ in improving the viability of Lactobacillus salivarius MG242 was examined. L. salivarius MG242 has antifungal effects against Candida albicans. Heat-adapted cells had a higher survival rate than non-adapted cells during the subsequent heat stress. When chloramphenicol was added during the adaptation process, heat tolerance was abolished, suggesting the involvement of de novo protein synthesis with the heat adaptation of L. salivarius MG242 strain. Exopolysaccharide quantification and scanning election microscopy did not reveal any appreciable changes during heat adaptation. The antifungal activity of L. salivarius MG242 against C. albicans was maintained during the heat adaptation. These results suggest that heat adaptation can be applied for the development of probiotic products using L. salivarius MG242 to improve its stress tolerance during processing.

Waardenburg Syndrome Type IV De Novo SOX10 Variant Causing Chronic Intestinal Pseudo-Obstruction

  • Hogan, Anthony R.;Rao, Krishnamurti A.;Thorson, Willa L.;Neville, Holly L.;Sola, Juan E.;Perez, Eduardo A.
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제22권5호
    • /
    • pp.487-492
    • /
    • 2019
  • Waardenburg syndrome (WS) type IV is characterized by pigmentary abnormalities, deafness and Hirschsprung's disease. This syndrome can be triggered by dysregulation of the SOX10 gene, which belongs to the SOX (SRY-related high-mobility group-box) family of genes. We discuss the first known case of a SOX10 frameshift mutation variant defined as c.895delC causing WS type IV without Hirschsprung's disease. This female patient of unrelated Kuwaiti parents, who tested negative for cystic fibrosis and Hirschsprung's disease, was born with meconium ileus and malrotation and had multiple surgical complications likely due to chronic intestinal pseudo-obstruction. These complications included small intestinal necrosis requiring resection, development of a spontaneous fistula between the duodenum and jejunum after being left in discontinuity, and short gut syndrome. This case and previously reported cases demonstrate that SOX10 gene sequencing is a consideration in WS patients without aganglionosis but with intestinal dysfunction.

Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy

  • Zhang, Yinhua;Lee, Yeunkum;Han, Kihoon
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.304-311
    • /
    • 2019
  • The cytoplasmic FMR1-interacting protein family (CYFIP1 and CYFIP2) are evolutionarily conserved proteins originally identified as binding partners of the fragile X mental retardation protein (FMRP), a messenger RNA (mRNA)-binding protein whose loss causes the fragile X syndrome. Moreover, CYFIP is a key component of the heteropentameric WAVE regulatory complex (WRC), a critical regulator of neuronal actin dynamics. Therefore, CYFIP may play key roles in regulating both mRNA translation and actin polymerization, which are critically involved in proper neuronal development and function. Nevertheless, compared to CYFIP1, neuronal function and dysfunction of CYFIP2 remain largely unknown, possibly due to the relatively less well established association between CYFIP2 and brain disorders. Despite high amino acid sequence homology between CYFIP1 and CYFIP2, several in vitro and animal model studies have suggested that CYFIP2 has some unique neuronal functions distinct from those of CYFIP1. Furthermore, recent whole-exome sequencing studies identified de novo hot spot variants of CYFIP2 in patients with early infantile epileptic encephalopathy (EIEE), clearly implicating CYFIP2 dysfunction in neurological disorders. In this review, we highlight these recent investigations into the neuronal function and dysfunction of CYFIP2, and also discuss several key questions remaining about this intriguing neuronal protein.