• Title/Summary/Keyword: Dc Distribution

Search Result 596, Processing Time 0.028 seconds

Control of the Bidirectional DC/DC Converter for a DC Distribution Power System in Electric Vehicles (전기 자동차의 DC 배전 시스템을 위한 양방향 DC/DC 컨버터의 제어)

  • Chang, Han-Sol;Lee, Joon-Min;Kim, Choon-Tack;La, Jae-Du;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.943-949
    • /
    • 2013
  • Recently, an electric vehicle (EV) has been become a huge issue in the automotive industry. The EV has many electrical units: electric motors, batteries, converters, etc. The DC distribution power system (DPS) is essential for the EV. The DC DPS offers many advantages. However, multiple loads in the DC DPS may affect the severe instability on the DC bus voltage. Therefore, a voltage bus conditioner (VBC) may use the DC DPS. The VBC is used to mitigate the voltage transient on the bus. Thus, a suitable control technique should be selected for the VBC. In this research, Current controller with fixed switching frequency is designed and applied for the VBC. The DC DPS consist of both a resistor load and a boost converter load. The load variations cause the instability of the DC DPS. This instability is mitigated by the VBC. The simulation results by Matlab simulink and experimental results are presented for validating the proposed VBC and designed control technique.

A Simple-Structured DC Solid-State Circuit Breaker with Easy Charging Capability (충전 동작이 용이한 간단한 구조의 DC 반도체 차단기)

  • Kim, Jin-Young;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1575-1583
    • /
    • 2017
  • With the development of DC distribution, DC circuit breaker is required to ensure the stability of the DC grid. Unlike a mechanical circuit breaker that blocks after several tens of milliseconds, a DC SSCB(Solid-State Circuit Breaker) can break the fault well within 1 [ms], so it can prevent the damage of accident. However, the previous DC SSCB requires a lot of switching elements for charging commutation capacitors, and the control is complicated. Therefore, this paper proposes a new DC SSCB suitable for DC grid. The proposed DC SSCB is simple to control for charging commutation capacitors, and it can perform the rapid breaking and operating duty of reclosing and rebreaking. The proposed DC SSCB was designed to 380 [V] and 5 [kW] class which is suitable for residential DC distribution, and the operating characteristics of the proposed DC SSCB were verified by simulations and experiments. It is anticipated that the proposed DC SSCB may be utilized to design and realize DC grid system.

Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality (전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어)

  • Lee, Hee-Jun;Shin, Soo-Choel;Kang, Jin-Wook;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

Analysis of Human Safety and System Effect according to Grounding Scheme in LVDC Distribution System (LVDC 배전계통의 접지방식에 따른 인체안전 및 계통영향 분석)

  • Oh, Yun-Sik;Han, Joon;Gwon, Gi-Hyeon;Kim, Doo-Ung;Noh, Chul-Ho;Jung, Tack-Hyun;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.608-614
    • /
    • 2014
  • Recent developments and trends in the electric power consumption clearly indicate an increasing use of DC in end-user equipment. According to the trends, new DC power distribution systems have been researched and developed although we presently enjoy a predominantly AC power distribution system. We can use various grounding schemes in DC distribution system as well as in AC distribution system to protect human body and equipments. However, we need to evaluate carefully which grounding scheme is appropriate for a specific system before applying those schemes. In this paper, we analyze the human safety and system effect according to various grounding schemes in Low Voltage DC (LVDC) distribution system. Some components in LVDC distribution system are modeled and computer simulations are conducted by using ElectroMagnetic Transient Program (EMTP).

A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구)

  • Yun, Hyeok-Jin;Kim, Myoungho;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

Development of ELCB with Built-in Algorithm for DC Leakage Current Detection (DC 누설 전류 검출 알고리즘을 내장한 누전 차단기 개발)

  • Joo, Nam-Kyu;Kim, Nam-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.165-169
    • /
    • 2014
  • Digital load is increasing suddenly for various reasons, such as easy control and management. Accordingly, a consumption pattern of load is becoming DC. However, the power supply is supplied by AC power. The load power supply substantially needs DC power. AC power has to be converted to DC power. Renewable energy sources like solar, wind, fuel cells are DC power generation, but the transfer needs to through by AC power, thus DC power has to be converted to AC power. Resultantly, a multi-stage conversion loss is constantly increasing. The power distribution system of DC-based is required for effective use of these energy sources. This requires a DC load, as well as is necessary to develop DC ELCB which are able to detect DC leakage current for implementing protection. In this study, it realize detection algorithm about DC leakage current to verify the performance of the sensor and apply it to the ELCB which is based on DC. Therefore, it is expected to protect operating of DC power distribution system.

Implementation of a Photovoltaic System Simulator for Interconnecting with Bipolar ±750V DC distribution Grid (바이폴 ±750 직류 배전망 연계용 태양광 발전 시뮬레이터 구현)

  • Kim, Tae-Hoon;Kim, Seok-Woong;Cho, Jin-Tae;Kim, Ju-Yong;Jung, Jae-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1800-1805
    • /
    • 2016
  • The micro-grid designed as bipolar ${\pm}750V$ low-voltage DC power distribution system demonstrated by KEPRI, demands interconnection of a number of small decentralized power source including variable renewable generator. Therefore, variable researches for the influence of interconnection with the bipolar typed DC grid and these variable power sources are required for superior quality of power distribution. Renewable power generation simulators for the bipolar ${\pm}750V$ low-voltage DC power distribution system are necessary for such researches. In this paper, we carry out a research on the photovoltaic simulator that be actually able to interconnect with a bipolar ${\pm}750V$ low-voltage micro-grid. Simulator for this research is not only able to simulate photovoltaic generation according to weather informations and PV modules characteristics, but also contribute to stabilization of bipolar ${\pm}750V$ low-voltage of the system. Therefore, the simulator was designed to develop a system that can situationally respond to variable control algorithms such as the MPPT control, droop control, EMS power control, etc.

Analysis on Voltage Sag in Low Voltage DC Distribution System according to the Number of Poles (극 수에 따른 저압직류 배전계통의 순시전압강하 분석)

  • Noh, Chul-Ho;Kim, Doo-Ung;Gwon, Gi-Hyeon;Oh, Yun-Sik;Han, Jun;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.66-73
    • /
    • 2015
  • AC-based power systems, having the advantages that voltage transformation and long distance transmission are easy, have been constructed since the last 19th century. However, DC-based power system is paid attention these days because of the development of power electronic devices as well as the increase of digital loads and distributed generation. For instance, the transmission systems using High Voltage DC (HVDC) are commercially operated in the world and the researches on distribution system using Low Voltage DC (LVDC) are gradually increased. This paper analyzes voltage sag, resulted from faults, in LVDC distribution system according to the number of poles. Modeling and simulation with various conditions are conducted by using ElectroMagnetic Transients Program (EMTP). Moreover, some countermeasures to reduce voltage sag in LVDC distribution system are suggested briefly.

A Feasibility Study on DC Microgrids Considering Energy Efficiency (에너지 효율분석을 통한 DC 마이크로그리드의 타당성 검토)

  • Yu, Cheol-Hee;Chung, Il-Yop;Hong, Sung-Soo;Chae, Woo-Kyu;Kim, Ju-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1674-1683
    • /
    • 2011
  • More than 80% of electric loads need DC electricity rather than AC at the moment. If DC power could be supplied directly to the terminal loads, power conversion stages including rectifiers, converters, and power adapters can be reduced or simplified. Therefore, DC microgrids may be able to improve energy efficiency of power distribution systems. In addition, DC microgrids can increase the penetration level of renewable energy resources because many renewable energy resources such as solar photovoltaic(PV) generators, fuel cells, and batteries generate electric power in the form of DC power. The integration of the DC generators to AC electric power systems requires the power conversion circuits that may cause additional energy loss. This paper discusses the capability and feasibility of DC microgrids with regard to energy efficiency analysis through detailed dynamic simulation of DC and AC microgrids. The dynamic simulation models of DC and AC microgrids based on the Microgrid Test System in KEPCO Research Institute are described in detail. Through simulation studies on various conditions, this paper compares the energy efficiency and advantages of DC and AC microgrids.

The design of the Sliding Mode Controller of Voltage Bus Conditioner for a DC Power Distribution System with multiple parallel loads in the Electrical Vehicles (다중 병렬 부하를 갖는 전기 자동차의 DC 배전 시스템을 위한 Voltage Bus Conditioner의 슬라이딩 모드 제어기 설계)

  • Chang, Han-Sol;Jeon, Yong-Sung;La, Jae-Du;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1141-1142
    • /
    • 2011
  • An electrical vehicle (EV) is a huge issue in the automotive industry. The EV have many electrical units: electric motors, batteries, converters, ets. The DC power distribution system (PDS) is essential for the EV. The DC PDS offers many advantages. However, multiple loads in the DC PDS may affect the severe instability on the DC bus voltage. Therefore, a voltage bus conditioner (VBC) may use the DC PDS. The VBC is used to mitigate the voltage transient on the bus. In this paper, sliding mode controller (SMC) is designed for the VBC of DC PDS in the EV. The simulation results by PISM simulation package are presented for validating the proposed control technique.

  • PDF