Proceedings of the Korean Operations and Management Science Society Conference
/
2001.10a
/
pp.265-268
/
2001
As growing the electronic commerce there are significant changes in the products/services catalog into the on-line environment. Advertent of e-catalog business opportunity for their own product/services enlarges the market volume and there are diverse methods for the presentation of its product/services. A method for the presentation of product/services features one uses identification and classification system. This study constructs a classification system and database layout for the product/services classification system as a part of e-catalog system. We consider the specific method for the GDAS-based dataset and UNSPSC classification system in the distribution industry.
Journal of the Korean Society for Library and Information Science
/
v.53
no.2
/
pp.247-266
/
2019
The purpose of this study is to propose a W3C standard, DCAT, to manage and service dataset that is becoming increasingly important as new knowledge information resources. To do this, we first analyzed the class and properties of the four core classes of DCAT. In addition, I modeled and presented a system that can manage and service various data sets based on DCAT in digital library. The system is divided into source data, data set management, linked data connection, and user service. Especially, the DCAT mapping function is suggested in dataset management. This feature can ensure interoperability of various datasets.
We present a comprehensive re-analysis of stellar photometric variability in the field of open cluster M37, using our new high-precision light curves. This dataset provides a rare opportunity to explore different types of variability between short (-minutes) and long (-one month) time-scales. To investigate the variability properties of -30,000 objects, we developed new algorithms for detecting periodic, aperiodic, and sporadic variability in their light curves. About 7.5% (2,284) of the total sample exhibits convincing variations that are induced by flares, pulsations, eclipses, starspots and, in some cases, unknown causes. The benefits of our new photometry and analysis package are evident. The discovery rate of new variables is increased by 63% in comparison with the existing catalog of variables, and 51 previously identified variables were found to be false positives resulting from time-dependent systematic effects. Based on extended and improved catalog of variables, we will review the basic properties (e.g., periodicity, amplitude, type) of the variability and how different they are for different spectral types and for cluster memberships.
Recently, several studies have utilized machine learning to efficiently and accurately analyze seismic data that are exponentially increasing. In this study, we expand earthquake information such as occurrence time, hypocentral location, and magnitude to produce a dataset for applying to machine learning, reducing the dimension of the expended data into dominant features through principal component analysis. The dimensional extended data comprises statistics of the earthquake information from the Global Centroid Moment Tensor catalog containing 36,699 seismic events. We perform data preprocessing using standard and max-min scaling and extract dominant features with principal components analysis from the scaled dataset. The scaling methods significantly reduced the deviation of feature values caused by different units. Among them, the standard scaling method transforms the median of each feature with a smaller deviation than other scaling methods. The six principal components extracted from the non-scaled dataset explain 99% of the original data. The sixteen principal components from the datasets, which are applied with standardization or max-min scaling, reconstruct 98% of the original datasets. These results indicate that more principal components are needed to preserve original data information with even distributed feature values. We propose a data processing method for efficient and accurate machine learning model to analyze the relationship between seismic data and seismic behavior.
Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
/
2010.04a
/
pp.363-365
/
2010
In this study, based on numerical map GIS-T Dataset build and by using ArcGIS Network Analysis emergency vehicle's reach time were analyzed. AutoCad using 1: 50,000 based on roads and hospitals of numerical map were creating a Polyline and Point and Network Dataset made using ArcCatalog. ArcGIS Analysis setting the interval for the period reached 3 minutes, 5 minutes, 15 minutes was set and then U-Turn was set to not allow because U-turn takes a long time to calculate and does not happen often on the real road. Intersection of the passage of time, considering that the emergency vehicles were set to 3 seconds. To expand by taking advantage of this facility on Vulnerable area will be used as base material. If we focus on analyzing the emergency activity to convert little data, To prepare for disaster and disaster will be able to use the materials.
Genome-wide association (GWA) studies have found many important genetic variants that affect various traits. Since these studies are useful to investigate untyped but causal variants using linkage disequilibrium (LD), it would be useful to explore the haplotypes of single-nucleotide polymorphisms (SNPs) within the same LD block of significant associations based on high-density variants from population references. Here, we tried to make a haplotype catalog affecting body mass index (BMI) through an integrative analysis of previously published whole-genome next-generation sequencing (NGS) data of 7 representative Korean individuals and previously known Korean GWA signals. We selected 435 SNPs that were significantly associated with BMI from the GWA analysis and searched 53 LD ranges nearby those SNPs. With the NGS data, the haplotypes were phased within the LDs. A total of 44 possible haplotype blocks for Korean BMI were cataloged. Although the current result constitutes little data, this study provides new insights that may help to identify important haplotypes for traits and low variants nearby significant SNPs. Furthermore, we can build a more comprehensive catalog as a larger dataset becomes available.
The traditional newspaper industry faces the opportunities and challenges of industry transformation and integration with new media. Consequently, the catalogs of newspapers and magazines are also updated. In this study, necessary information on catalogs was obtained and used to analyze the overall development trend of the newspaper industry. A word frequency analysis was then performed on the introduction and product categories of the catalogs, and the content and types of newspapers and magazines were examined. Furthermore, related factors such as price, number of pages, publishing frequency, and best-selling status were analyzed; the correlation among factors affecting best-selling status was also explored. Subsequently, each element and a combination of elements were used to generate a dataset, build three classification models, and analyze the accuracy of predictions of whether newspapers sold well under other circumstances. The experimental results showed that price is the most critical factor affecting the best-selling status of newspapers and magazines. Publishing frequency and the number of pages were also found to be significant indicators that impact people's subscription choices. Finally, a competitive strategy regarding content, price, quality, and positioning was developed.
This study developed a machine learning-based methodology to classify gravitational wave (GW) signals from black hol-eneutron star (BH-NS) mergers by combining convolutional neural network (CNN) with conditional information for feature extraction. The model was trained and validated on a dataset of simulated GW signals injected to Gaussian noise to mimic real world signals. We considered all three types of merger: binary black hole (BBH), binary neutron star (BNS) and neutron starblack hole (NSBH). We achieved up to 96% correct classification of GW signals sources. Incorporating our novel conditional information approach improved classification accuracy by 10% compared to standard time series training. Additionally, to show the effectiveness of our method, we tested the model with real GW data from the Gravitational Wave Transient Catalog (GWTC-3) and successfully classified ~90% of signals. These results are an important step towards low-latency real-time GW detection.
Journal of the Korean Society for Library and Information Science
/
v.56
no.4
/
pp.5-28
/
2022
In this study, LD construction cases of overseas libraries were analyzed with focus on published datasets, reused vocabulary, and interlinked external datasets, and based on the analysis results, basic data on LD construction plans of domestic libraries were obtained. As a result of the analysis of 21 library cases, overseas libraries have established a faithful authority LD and conducted new services using published LDs. To this end, overseas libraries collaborated with other libraries and cultural institutions within the region, within the country, and nationally under the leadership of the library, and based on this cooperation, a specialized dataset was published. Overseas libraries used Schema.org to increase the visibility of published LDs, and used BIBFRAME for subdivision of description to define various entities and build LDs based on the defined entities. Overseas libraries have utilized various defined entities to link related information, display results, browse, and download in bulk. Overseas libraries were interested in the continuous up-to-date of interlinked external datasets, and directly utilized external data to reinforce catalog information. In this study, based on the derived implications, points to be considered when issuing LDs by domestic libraries were proposed. The research results can be used as basic data when future domestic libraries plan LD services or upgrade existing services.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.