• 제목/요약/키워드: Database Algorithm

검색결과 1,655건 처리시간 0.032초

Epidemiology of PAH in Korea: An Analysis of the National Health Insurance Data, 2002-2018

  • Albert Youngwoo Jang;Hyeok-Hee Lee;Hokyou Lee;Hyeon Chang Kim;Wook-Jin Chung
    • Korean Circulation Journal
    • /
    • 제53권5호
    • /
    • pp.313-327
    • /
    • 2023
  • Background and Objectives: Pulmonary arterial hypertension (PAH) is a rare but fatal disease. Recent advances in PAH-specific drugs have improved its outcomes, although the healthcare burden of novel therapeutics may lead to a discrepancy in outcomes between developing and developed countries. We analyzed how the epidemiology and clinical features of PAH has changed through the rapidly advancing healthcare infrastructure in South Korea. Methods: PAH was defined according to a newly devised 3-component algorithm. Using a nationwide health insurance claims database, we delineated annual trends in the prevalence, incidence, medication prescription pattern, and 5-year survival of PAH in Korea. Cumulative survival and potential predictors of mortality were also assessed among 2,151 incident PAH cases. Results: Between 2002 or 2004 and 2018, the prevalence and incidence of PAH increased 75-fold (0.4 to 29.9 per million people) and 12-fold (0.5 to 6.3 per million person-years), respectively. The proportion of patients on combination PAH-specific drug therapy has also steadily increased up to 29.0% in 2018. Among 2,151 incident PAH cases (median [interquartile range] age, 50 [37-62] years; 67.2% female), the 5-year survival rate and median survival duration were 71.8% and 13.1 years, respectively. Independent predictors of mortality were age, sex, etiology of PAH, diabetes, dyslipidemia, and chronic kidney disease. Conclusions: This nationwide study delineated that the prevalence and incidence of PAH have grown rapidly in Korea since the early 2000s. The use of combination therapy has also increased, and the 5-year survival rate of PAH in Korea was similar to those in western countries.

Identifying Atrial Fibrillation With Sinus Rhythm Electrocardiogram in Embolic Stroke of Undetermined Source: A Validation Study With Insertable Cardiac Monitors

  • Ki-Hyun Jeon;Jong-Hwan Jang;Sora Kang;Hak Seung Lee;Min Sung Lee;Jeong Min Son;Yong-Yeon Jo;Tae Jun Park;Il-Young Oh;Joon-myoung Kwon;Ji Hyun Lee
    • Korean Circulation Journal
    • /
    • 제53권11호
    • /
    • pp.758-771
    • /
    • 2023
  • Background and Objectives: Paroxysmal atrial fibrillation (AF) is a major potential cause of embolic stroke of undetermined source (ESUS). However, identifying AF remains challenging because it occurs sporadically. Deep learning could be used to identify hidden AF based on the sinus rhythm (SR) electrocardiogram (ECG). We combined known AF risk factors and developed a deep learning algorithm (DLA) for predicting AF to optimize diagnostic performance in ESUS patients. Methods: A DLA was developed to identify AF using SR 12-lead ECG with the database consisting of AF patients and non-AF patients. The accuracy of the DLA was validated in 221 ESUS patients who underwent insertable cardiac monitor (ICM) insertion to identify AF. Results: A total of 44,085 ECGs from 12,666 patient were used for developing the DLA. The internal validation of the DLA revealed 0.862 (95% confidence interval, 0.850-0.873) area under the curve (AUC) in the receiver operating curve analysis. In external validation data from 221 ESUS patients, the diagnostic accuracy of DLA and AUC were 0.811 and 0.827, respectively, and DLA outperformed conventional predictive models, including CHARGE-AF, C2HEST, and HATCH. The combined model, comprising atrial ectopic burden, left atrial diameter and the DLA, showed excellent performance in AF prediction with AUC of 0.906. Conclusions: The DLA accurately identified paroxysmal AF using 12-lead SR ECG in patients with ESUS and outperformed the conventional models. The DLA model along with the traditional AF risk factors could be a useful tool to identify paroxysmal AF in ESUS patients.

Hybrid machine learning with HHO method for estimating ultimate shear strength of both rectangular and circular RC columns

  • Quang-Viet Vu;Van-Thanh Pham;Dai-Nhan Le;Zhengyi Kong;George Papazafeiropoulos;Viet-Ngoc Pham
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.145-163
    • /
    • 2024
  • This paper presents six novel hybrid machine learning (ML) models that combine support vector machines (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with the Harris Hawks Optimization (HHO) algorithm. These models, namely HHO-SVM, HHO-DT, HHO-RF, HHO-GB, HHO-XGB, and HHO-CGB, are designed to predict the ultimate strength of both rectangular and circular reinforced concrete (RC) columns. The prediction models are established using a comprehensive database consisting of 325 experimental data for rectangular columns and 172 experimental data for circular columns. The ML model hyperparameters are optimized through a combination of cross-validation technique and the HHO. The performance of the hybrid ML models is evaluated and compared using various metrics, ultimately identifying the HHO-CGB model as the top-performing model for predicting the ultimate shear strength of both rectangular and circular RC columns. The mean R-value and mean a20-index are relatively high, reaching 0.991 and 0.959, respectively, while the mean absolute error and root mean square error are low (10.302 kN and 27.954 kN, respectively). Another comparison is conducted with four existing formulas to further validate the efficiency of the proposed HHO-CGB model. The Shapely Additive Explanations method is applied to analyze the contribution of each variable to the output within the HHO-CGB model, providing insights into the local and global influence of variables. The analysis reveals that the depth of the column, length of the column, and axial loading exert the most significant influence on the ultimate shear strength of RC columns. A user-friendly graphical interface tool is then developed based on the HHO-CGB to facilitate practical and cost-effective usage.

토픽 모델링을 이용한 전기차 연구 동향 분석 (The Analysis of Research Trends in Electric Vehicle using Topic Modeling)

  • 천위안;조석수
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.255-265
    • /
    • 2024
  • 환경 문제와 에너지 효율성을 향상시키기 위하여 전기자동차를 도입함으로서 이에 따른 연구가 급증하고 있다. 그러나 전기 자동차 분야의 연구 동향을 전체적으로 파악기 위해서는 방대한 데이터를 체계적으로 분석할 필요가 있다. 본 연구에서는 SCIE 데이터베이스에서 수집한 36,519편의 전기 자동차 관련 논문을 바탕으로 LDA주제 모델링을 수행하여 전기 자동차 분야의 연구 동향을 체계적으로 분석하고 주요 연구 주제를 파악하였다. 데이터 분석 결과, 총 10개의 주요 주제가 도출되었으며, 이 중 3개 주제는 상승 추세를 보이는 핫 토픽으로 확인되었으며 그 분야는 Electric Vehicle Charging Infrastructure, Energy and Environmental Policy, Optimization and Algorithms이었다. 그러나, 5개 주제는 하락 추세를 보이는 콜드 토픽으로 분류되었으며 그 분야는 Battery Temperature and Cooling, Battery Materials and Chemistry, Motor and Mechanical Design, Control Strategies and Systems, Battery Components and Materials이었다. 본 연구에서는 전기 자동차 분야의 최신 연구 동향을 이해하는 데 중요한 기초 자료를 제공하였으며, 전기자동차 관련 연구자가 연구 주제 선정에 필요한 유용한 정보를 제공하였다.

AR과 IoT 기술을 기반으로 한 건물 화재 모니터링 및 탈출 내비게이션 시스템 (Building Fire Monitoring and Escape Navigation System Based on AR and IoT Technologies)

  • 왕문도;이승용;박상훈;윤승현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.159-169
    • /
    • 2024
  • 본 논문에서는 증강 현실 (AR) 기술과 사물 인터넷 (IoT) 기술을 융합하여 새로운 실시간 화재 모니터링 및 대피 내비게이션 시스템을 제안한다. 제안된 시스템은 건물 내에 설치된 IoT 온도 측정 디바이스를 통해 온도 데이터를 수집하고, 이를 IoT 플랫폼을 통해 MySQL 클라우드 데이터베이스에 자동으로 전송함으로써 실시간으로 정확한 데이터를 모니터링한다. 이후, 건축 정보 모델링 (BIM)을 통해 생성된 3D 건물 모델에 실시간 IoT 데이터를 가시화하고, AR 기술을 통해 현실 세계에 모델을 표현함으로써 직관적으로 화재 발생 위치를 파악할 수 있다. 또한, Vuforia 엔진의 Device Tracking 및 Area Targets 기능을 활용하여 사용자의 실시간 위치를 파악하고, 개선된 A* 알고리즘을 통해 여러 비상구 중 최적의 대피 경로를 찾는다. 본 논문에서는 다양한 가상 화재 시나리오를 기반으로 사용자 실험 평가를 진행하여 제안된 시스템의 실용성과 빠르고 안전한 대피 효과를 입증한다.

The development of four efficient optimal neural network methods in forecasting shallow foundation's bearing capacity

  • Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • 제34권2호
    • /
    • pp.151-168
    • /
    • 2024
  • This research aimed to appraise the effectiveness of four optimization approaches - cuckoo optimization algorithm (COA), multi-verse optimization (MVO), particle swarm optimization (PSO), and teaching-learning-based optimization (TLBO) - that were enhanced with an artificial neural network (ANN) in predicting the bearing capacity of shallow foundations located on cohesionless soils. The study utilized a database of 97 laboratory experiments, with 68 experiments for training data sets and 29 for testing data sets. The ANN algorithms were optimized by adjusting various variables, such as population size and number of neurons in each hidden layer, through trial-and-error techniques. Input parameters used for analysis included width, depth, geometry, unit weight, and angle of shearing resistance. After performing sensitivity analysis, it was determined that the optimized architecture for the ANN structure was 5×5×1. The study found that all four models demonstrated exceptional prediction performance: COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP. It is worth noting that the MVO-MLP model exhibited superior accuracy in generating network outputs for predicting measured values compared to the other models. The training data sets showed R2 and RMSE values of (0.07184 and 0.9819), (0.04536 and 0.9928), (0.09194 and 0.9702), and (0.04714 and 0.9923) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively. Similarly, the testing data sets produced R2 and RMSE values of (0.08126 and 0.07218), (0.07218 and 0.9814), (0.10827 and 0.95764), and (0.09886 and 0.96481) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively.

칼라 상관관계 역투영법을 적용한 효율적인 객체 지역화 기법 (Efficient Object Localization using Color Correlation Back-projection)

  • 이용환;조한진;이준환
    • 디지털융복합연구
    • /
    • 제14권5호
    • /
    • pp.263-271
    • /
    • 2016
  • 이미지 내에서 객체를 검출하고 해당 위치를 추출하는 지역화 기법은 컴퓨터 비전에서 많이 활용되는 기술이다. 기존 연구들은 하나의 객체를 대상으로 위치 검출을 수행하지만, 실제 사진에서는 다수의 유사 객체를 포함하는 경우가 많기 때문에, 활용에 한계가 있다. 이러한 문제를 해결하기 위해, 본 논문에서는 이미지 인식을 위해 객체 지역화의 새로운 알고리즘을 제안한다. 제안 알고리즘은 YCbCr 색채 성분에서 코렐로그램 역투영 기법을 활용하여 객체 지역화 문제를 해결한다. 제안 알고리즘에서는 질의 이미지의 객체가 포함되는 이미지의 위치를 검출할 수 있으며, 다수의 유사 객체가 존재할 경우 포함되는 객체 개수 정보 없이도 유사 후보 객체의 영역과 위치를 검출할 수 있다. 제안 알고리즘의 성능을 평가할 실험 결과, 기존에 연구된 방법에 비해, 21%의 성능 향상을 보였다. 이러한 결과를 통해, 색상 코렐로그램이 히스토그램 기법보다 성능적 우위를 보였다. 본 논문의 주요 공헌은 색 공간과 공간-색상 정보를 통해 객체 지역화 문제를 해결할 수 있는 또다른 기술을 제시한 것으로 학문적 기여를 검증하였다.

RFID 데이터 스트림에서 이동궤적 패턴의 탐사 (Mining Frequent Trajectory Patterns in RFID Data Streams)

  • 서성보;이용미;이준욱;남광우;류근호;박진수
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권1호
    • /
    • pp.127-136
    • /
    • 2009
  • 이 논문은 RFID 데이터 스트림의 변화 특성을 고려하면서 단일 패스로 이동궤적 패턴을 실시간 추출하는 새로운 기법을 제안한다. RFID, 센서와 무선 네트워크 기술의 발달로 인해 현실 세계에서 실시간으로 데이터를 수집하고 유용한 패턴을 탐사하는 연구에 많은 관심이 집중되고 있다. 스트림 데이터에서 순차 패턴 또는 이동궤적 패턴을 탐사하는 기존의 연구 기법들은 반복적으로 데이터베이스 또는 트리를 탐색하는 고비용 문제점과 시간의 변화에 따르는 동적 특성을 실시간으로 패턴에 반영하지 못하는 단점이 있다. 제안하는 기법은 시간에 따라 RFID 데이터 스트림의 변화를 정확히 반영하기 위해 시간진화 그래프를 이용하여 이진 시간관계 테이블에 빈발한 2-길이 항목간 정보를 유지한다. 또한 다중 패스의 문제점을 해결하기 위해 t 시점에 이진 시간관계 테이블을 이용하여 k-길이의 후보 이동궤적 패턴을 추론하고, t+1 시점에서 후보 패턴을 검증하는 과정을 통해 k-길이 이동궤적 패턴을 단일 패스로 추출한다. 실험결과 제안하는 기법은 기존의 Apriori-계열 기법들과 비교하여 약 7% 정도 후보 패턴의 비율이 적게 생성되어 시간 및 공간 복잡도 측면에서 우수한 성능을 보였다.

  • PDF

다단 최적 설계 프레임워크를 활용한 전기추진 항공기 프로펠러 공력 최적 설계 (Aerodynamic Design of EAV Propeller using a Multi-Level Design Optimization Framework)

  • 권형일;이슬기;최성임;김근배
    • 한국항공우주학회지
    • /
    • 제41권3호
    • /
    • pp.173-184
    • /
    • 2013
  • 본 연구에서는 프로펠러나 헬리콥터 로터와 같은 회전체의 공력 최적 설계를 위한 다단 최적 설계 프레임워크를 제안한다. 이 프레임워크는 플랜폼 설계와 단면의 형상 설계를 반복적으로 수행하는 설계 전략을 통해 회전체의 공력 성능 향상을 목표로 한다. 플랜폼 설계의 단계에서는 유전 알고리즘과 2차원 CFD 데이터베이스 기반의 깃 요소 모멘텀 이론을 이용하여 빠른 시간에 회전체의 공력 특성을 평가하여 최적점을 탐색하였다. 플랜폼 설계 후 단면에 유입되는 유동 조건을 예측하여 단면 형상 최적 설계를 수행하였다. 설계 과정에서 보다 면밀하게 유동 특성이 분석될 수 있도록 2차원 N-S 해석자와 민감도 기반의 최적화 알고리즘을 통해 최적해를 탐색하였다. 단면 형상이 설계된 후에는 최적의 유동 조건을 산출할 수 있도록 플랜폼 설계를 반복적으로 수행하였다. 본 프레임워크를 1kW급 전기추진용 항공기 프로펠러 설계에 적용하여 그 유효성을 3차원 N-S 해석과 풍동 실험을 통해 검증하였다. 설계 후, 풍동 실험 결과를 기준으로 약 5%의 프로펠러 효율 증가를 얻을 수 있었다.

저작권보호를 위한 내용기반 비디오 복사검출의 비디오 정합 알고리즘 (Video Matching Algorithm of Content-Based Video Copy Detection for Copyright Protection)

  • 현기호
    • 한국멀티미디어학회논문지
    • /
    • 제11권3호
    • /
    • pp.315-322
    • /
    • 2008
  • 비디오 데이터베이스에서 복사본의 위치를 검출하기 위해서는 비디오의 특징(signature)이 비디오의 재편집(reediting), 채널 잡음, 시간적인 프레임 율(frame rate) 변화에 강한 특성을 지녀야 한다. 여러 가지 시그네쳐중 하나인 오디널(ordinal) 시그네쳐는 평균 명암도 값을 구하는 고정 윈도우(fixed window) $N{\times}N$의 크기에 따라 프레임의 공간적인 특징을 나타내기 어렵다. 본 논문은 인터넷상에서 이미 배포된 비디오, 위조된 비디오의 검출을 위해 키 프레임으로 정합하지 않고 연속적인 비디오 프레임에서 공간의 변화특성인 기존의 오디널을 개선한 변형된 robust 오디널 특징을 제안하였다. Robust 오디널은 2차원 벡터 구조를 가지고 있어 비디오의 잡음과 프레임 율의 변화에 강한 특성을 가지고 있으며, 검색공간인 R-트리 공간에서 MBR 형태로 표현될 수 있다. 또한 비디오 복사 검출에 필수적인 대용량 데이터베이스 검색에 적합한 R-트리 구조를 이용하여 정확히 정합되는 프레임의 위치를 찾아내고, n차원 입력의 구조를 가지고 있는 R-트리의 입력으로 robust 오디널 특징이 적합하게 사용되었다. 실험결과 비디오 정합율이 향상되고 대용량 데이터베이스에 알맞은 특징을 가지고 있음을 확인하였다.

  • PDF