• Title/Summary/Keyword: Database Algorithm

Search Result 1,655, Processing Time 0.026 seconds

Breast Cancer Diagnosis using Naive Bayes Analysis Techniques (Naive Bayes 분석기법을 이용한 유방암 진단)

  • Park, Na-Young;Kim, Jang-Il;Jung, Yong-Gyu
    • Journal of Service Research and Studies
    • /
    • v.3 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • Breast cancer is known as a disease that occurs in a lot of developed countries. However, in recent years, the incidence of Korea's modern woman is increased steadily. As well known, breast cancer usually occurs in women over 50. In the case of Korea, however, the incidence of 40s with young women is increased steadily than the West. Therefore, it is a very urgent task to build a manual to the accurate diagnosis of breast cancer in adult women in Korea. In this paper, we show how using data mining techniques to predict breast cancer. Data mining refers to the process of finding regular patterns or relationships among variables within the database. To this, sophisticated analysis using the model, you will find useful information that is easily revealed. In this paper, through experiments Deicion Tree Naive Bayes analysis techniques were compared using analysis techniques to diagnose breast cancer. Two algorithms was analyzed by applying C4.5 algorithm. Deicison Tree classification accuracy was fairly good. Naive Bayes classification method showed better accuracy compared to the Decision Tree method.

  • PDF

Site Application of Artificial Neural Network for Tunnel Construction (인공신경망을 이용한 터널시공에서 현장 적용성)

  • Song, Joohyeon;Chae, Hwiyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.25-33
    • /
    • 2012
  • Although it is important to reflect the accurate information of the ground condition in the tunnel design, the analysis and design are conducted by limited information because it is very difficult to consider various geographies and geotechnical conditions. When the tunnel is under construction, examination of accurate safety and prediction of behavior are overcome the limits of predicting behavior by Artificial Neural Network in this study. First, construct the suitable structure after the data of field was made sure by the multi-layer back propagation, then apply with algorithm. Employ the result of measured data from database, and consider the influence factor of tunnel, like supporting pattern, RMR, Q, the types of rock, excavation length, excavation shape, excavation over, to carry out the reliable analysis through field applicability of Artificial Neural Network. After studying, using the ANN model to predict the shearing displacement, convergence displacement, underground displacement, Rock bolt output follow the excavation over of tunnel construction field, then determine the field applicability with ANN through field measured value and comparison analysis when tunnel is being constructed.

논제 부정 Access에 대한 Firewall의 과제와 대책

  • 변성준;서정석;최원석
    • Proceedings of the Korea Database Society Conference
    • /
    • 2000.11a
    • /
    • pp.227-238
    • /
    • 2000
  • Firewall은 다양한 부정Access의 방지책으로서 확실히 유효한 수단이지만 이 Firewall은 사용자로부터 지시된 설정을 충실히 실행하는 것으로 설정 오류, 소프트웨어의 정지, 허가된 룰을 악용한 침입 등 반드시 사용자가 바라는 작용을 무조건적 상태에서 보증해 주는 것은 아니다. 따라서 사용자는 도입 후 에도 운용시에 Access log를 감시하고 본래의 Security Policy에 반하는 행위를 매일 매일 체크하지 않으면 안될 상황에 처해 있다. 본 연구는 이러한 부정Access에 대한 이와 같은 Firewall의 현상에 대한 과제 중에서 "부정Access를 어떻게 하면 일찍, 정확히 체크할 수 있는가\ulcorner"라는 주제를 선택하여 Firewall의 한계와 그 대응책을 실제로 부정Access를 시험해 보는 것으로 검증하기로 하였다. 실험결과에서 (1)Port Scan이나 전자메일 폭탄(서비스정지공격)등은 Firewall로 방지하는 것은 불가능하거나 혹은 Checking이 곤란하다. (2)공격마다 로그 수집을 했음에도 관계없이 Firewall의 로그는 번잡하므로 단시간에 사태의 발견이 대단히 곤란하다고 하는 Firewall의 한계를 인식하였다. 그리고 그 대책으로서 우리는 체크 툴의 유효성에 착안하여 조사한 결과, 결국 무엇이 부정Access인가에 대해서는 어디까지나 이용하는 측이 판단하여 Firewall 상에 설정하지 않으면 안되지만 체크 툴은 이 부정Access 정보를 데이터베이스로서 갖고 있음으로써 '무엇이 부정Access인가'를 이용자 대신에 판단하고 툴에 따라서는 설정을 자동적으로 변경하여 부정 Access의 저지율을 향상시킨다. 이처럼 체크 툴은 Firewall의 수비능력을 보강하는 위치에 있다고 생각할 수 있다.다. 4 장에서는 3장에서 제기한 각각의 문제점에 대해 RAD 의 관점에 비추어 e-business 시스템의 단기개발을 실현하기 위한 고려사항이나 조건 해결책을 제안한다. 본 논문이 지금부터 e-business 를 시작하려고 하는 분, e-business 시스템의 개발을 시작하려고 하는 분께 단기간의 e-business 실현을 위한 하나의 지침이 된다면 다행이겠다.formable template is used to optimize the matching. Then, clustering the similar shapes by the distance between each centroid, papaya can be completely detected from the background.uage ("Association of research for algorithm of calculating machine (1992)"). As a result, conventional NN and CNN were available for interpolation of sampling data. Moreover, when nonlinear intensity is not so large under the field condition of small slope, interpolation performance of CNN was a little not so better than NN. However, when nonlinear intensity is large under the field condition of large slope, interpolation performance of CNN was relatively better than NN.콩과 자연 콩이 성분 분석에서 차이를

  • PDF

A study on decision tree creation using marginally conditional variables (주변조건부 변수를 이용한 의사결정나무모형 생성에 관한 연구)

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.299-307
    • /
    • 2012
  • Data mining is a method of searching for an interesting relationship among items in a given database. The decision tree is a typical algorithm of data mining. The decision tree is the method that classifies or predicts a group as some subgroups. In general, when researchers create a decision tree model, the generated model can be complicated by the standard of model creation and the number of input variables. In particular, if the decision trees have a large number of input variables in a model, the generated models can be complex and difficult to analyze model. When creating the decision tree model, if there are marginally conditional variables (intervening variables, external variables) in the input variables, it is not directly relevant. In this study, we suggest the method of creating a decision tree using marginally conditional variables and apply to actual data to search for efficiency.

An Agent-based Approach for Distributed Collaborative Filtering (분산 협력 필터링에 대한 에이전트 기반 접근 방법)

  • Kim, Byeong-Man;Li, Qing;Howe Adele E.;Yeo, Dong-Gyu
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.953-964
    • /
    • 2006
  • Due to the usefulness of the collaborative filtering, it has been widely used in both the research and commercial field. However, there are still some challenges for it to be more efficient, especially the scalability problem, the sparsity problem and the cold start problem. In this paper. we address these problems and provide a novel distributed approach based on agents collaboration for the problems. We have tried to solve the scalability problem by making each agent save its users ratings and broadcast them to the users friends so that only friends ratings and his own ratings are kept in an agents local database. To reduce quality degradation of recommendation caused by the lack of rating data, we introduce a method using friends opinions instead of real rating data when they are not available. We also suggest a collaborative filtering algorithm based on user profile to provide new users with recommendation service. Experiments show that our suggested approach is helpful to the new user problem as well as is more scalable than traditional centralized CF filtering systems and alleviate the sparsity problem.

Segmentation and Recognition of Traffic Signs using Shape Information and Edge Image in Real Image (실영상에서 형태 정보와 에지 영상을 이용한 교통 표지판 영역 추출과 인식)

  • Kwak, Hyun-Wook;Oh,Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.149-158
    • /
    • 2004
  • This study proposes a method for segmentation and recognition of traffic signs using shape information and edge image in real image. It first segments traffic sign candidate regions by connected component algorithm from binary images, obtained by utilizing the RGB color ratio of each pixel in the image, and then extracts actual traffic signs based on their symmetries on X- and Y-axes. Histogram equalization is performed for unsegmented candidate regions caused by low contrast in the image. In the recognition stage, it utilizes shape information including projection profiles on X- and Y-axes, moment, and the number of crossings and distance which concentric circular patterns and 8-directional rays from region center intersects with edges of traffic signs. It finally performs recognition by measuring similarity with the templates in the database. It will be shown from several experimental results that the system is robust to environmental factors, such as light and weather condition.

Collection and Extraction Algorithm of Field-Associated Terms (분야연상어의 수집과 추출 알고리즘)

  • Lee, Sang-Kon;Lee, Wan-Kwon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.347-358
    • /
    • 2003
  • VSField-associated term is a single or compound word whose terms occur in any document, and which makes it possible to recognize a field of text by using common knowledge of human. For example, human recognizes the field of document such as or , a field name of text, when she encounters a word 'Pitcher' or 'election', respectively We Proposes an efficient construction method of field-associated terms (FTs) for specializing field to decide a field of text. We could fix document classification scheme from well-classified document database or corpus. Considering focus field we discuss levels and stability ranks of field-associated terms. To construct a balanced FT collection, we construct a single FTs. From the collections we could automatically construct FT's levels, and stability ranks. We propose a new extraction algorithms of FT's for document classification by using FT's concentration rate, its occurrence frequencies.

Design of Digits Recognition System Based on RBFNNs : A Comparative Study of Pre-processing Algorithms (방사형 기저함수 신경회로망 기반 숫자 인식 시스템의 설계 : 전처리 알고리즘을 이용한 인식성능의 비교연구)

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.416-424
    • /
    • 2017
  • In this study, we propose a design of digits recognition system based on RBFNNs through a comparative study of pre-processing algorithms in order to recognize digits in handwritten. Histogram of Oriented Gradient(HOG) is used to get the features of digits in the proposed digits recognition system. In the pre-processing part, a dimensional reduction is executed by using Principal Component Analysis(PCA) and (2D)2PCA which are widely adopted methods in order to minimize a loss of the information during the reduction process of feature space. Also, The architecture of radial basis function neural networks consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, the connection weights are used as the extended type of polynomial expression such as constant, linear, quadratic and modified quadratic. By using MNIST handwritten digit benchmarking database, experimental results show the effectiveness and efficiency of proposed digit recognition system when compared with other studies.

Efficient Indexing for Large DNA Sequence Databases (대용량 DNA 시퀀스 데이타베이스를 위한 효율적인 인덱싱)

  • Won Jung-Im;Yoon Jee-Hee;Park Sang-Hyun;Kim Sang-Wook
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.650-663
    • /
    • 2004
  • In molecular biology, DNA sequence searching is one of the most crucial operations. Since DNA databases contain a huge volume of sequences, a fast indexing mechanism is essential for efficient processing of DNA sequence searches. In this paper, we first identify the problems of the suffix tree in aspects of the storage overhead, search performance, and integration with DBMSs. Then, we propose a new index structure that solves those problems. The proposed index consists of two parts: the primary part represents the trie as bit strings without any pointers, and the secondary part helps fast accesses of the leaf nodes of the trio that need to be accessed for post processing. We also suggest an efficient algorithm based on that index for DNA sequence searching. To verify the superiority of the proposed approach, we conducted a performance evaluation via a series of experiments. The results revealed that the proposed approach, which requires smaller storage space, achieves 13 to 29 times performance improvement over the suffix tree.

Design and Implementation of a Content-based Color Image Retrieval System based on Color -Spatial Feature (색상-공간 특징을 사용한 내용기반 칼라 이미지 검색 시스템의 설계 및 구현)

  • An, Cheol-Ung;Kim, Seung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.5
    • /
    • pp.628-638
    • /
    • 1999
  • In this paper, we presents a method of retrieving 24 bpp RGB images based on color-spatial features. For each image, it is subdivided into regions by using similarity of color after converting RGB color space to CIE L*u*v* color space that is perceptually uniform. Our segmentation algorithm constrains the size of region because a small region is discardable and a large region is difficult to extract spatial feature. For each region, averaging color and center of region are extracted to construct color-spatial features. During the image retrieval process, the color and spatial features of query are compared with those of the database images using our similarity measure to determine the set of candidate images to be retrieved. We implement a content-based color image retrieval system using the proposed method. The system is able to retrieve images by user graphic or example image query. Experimental results show that Recall/Precision is 0.80/0.84.