• 제목/요약/키워드: Data-driven model

검색결과 681건 처리시간 0.025초

Predictive model for the shear strength of concrete beams reinforced with longitudinal FRP bars

  • Alzabeebee, Saif;Dhahir, Moahmmed K.;Keawsawasvong, Suraparb
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.143-154
    • /
    • 2022
  • Corrosion of steel reinforcement is considered as the main cause of concrete structures deterioration, especially those under humid environmental conditions. Hence, fiber reinforced polymer (FRP) bars are being increasingly used as a replacement for conventional steel owing to their non-corrodible characteristics. However, predicting the shear strength of beams reinforced with FRP bars still challenging due to the lack of robust shear theory. Thus, this paper aims to develop an explicit data driven based model to predict the shear strength of FRP reinforced beams using multi-objective evolutionary polynomial regression analysis (MOGA-EPR) as data driven models learn the behavior from the input data without the need to employee a theory that aid the derivation, and thus they have an enhanced accuracy. This study also evaluates the accuracy of predictive models of shear strength of FRP reinforced concrete beams employed by different design codes by calculating and comparing the values of the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2), and percentage of prediction within error range of ±20% (a20-index). Experimental database has been developed and employed in the model learning, validation, and accuracy examination. The statistical analysis illustrated the robustness of the developed model with MAE, RMSE, 𝜇, 𝜎, R2, and a20-index of 14.6, 20.8, 1.05, 0.27, 0.85, and 0.61, respectively for training data and 10.4, 14.1, 0.98, 0.25, 0.94, and 0.60, respectively for validation data. Furthermore, the developed model achieved much better predictions than the standard predictive models as it scored lower MAE, RMSE, and 𝜎, and higher R2 and a20-index. The new model can be used in future with confidence in optimized designs as its accuracy is higher than standard predictive models.

An integrated approach for structural health monitoring using an in-house built fiber optic system and non-parametric data analysis

  • Malekzadeh, Masoud;Gul, Mustafa;Kwon, Il-Bum;Catbas, Necati
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.917-942
    • /
    • 2014
  • Multivariate statistics based damage detection algorithms employed in conjunction with novel sensing technologies are attracting more attention for long term Structural Health Monitoring of civil infrastructure. In this study, two practical data driven methods are investigated utilizing strain data captured from a 4-span bridge model by Fiber Bragg Grating (FBG) sensors as part of a bridge health monitoring study. The most common and critical bridge damage scenarios were simulated on the representative bridge model equipped with FBG sensors. A high speed FBG interrogator system is developed by the authors to collect the strain responses under moving vehicle loads using FBG sensors. Two data driven methods, Moving Principal Component Analysis (MPCA) and Moving Cross Correlation Analysis (MCCA), are coded and implemented to handle and process the large amount of data. The efficiency of the SHM system with FBG sensors, MPCA and MCCA methods for detecting and localizing damage is explored with several experiments. Based on the findings presented in this paper, the MPCA and MCCA coupled with FBG sensors can be deemed to deliver promising results to detect both local and global damage implemented on the bridge structure.

Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium

  • Ma, Zhi;Yun, Chung-Bang;Shen, Yan-Bin;Yu, Feng;Wan, Hua-Ping;Luo, Yao-Zhi
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.507-524
    • /
    • 2019
  • A Bayesian dynamic linear model (BDLM) is presented for a data-driven analysis for response prediction and load effect separation of a revolving auditorium structure, where the main loads are self-weight and dead loads, temperature load, and audience load. Analyses are carried out based on the long-term monitoring data for static strains on several key members of the structure. Three improvements are introduced to the ordinary regression BDLM, which are a classificatory regression term to address the temporary audience load effect, improved inference for the variance of observation noise to be updated continuously, and component discount factors for effective load effect separation. The effects of those improvements are evaluated regarding the root mean square errors, standard deviations, and 95% confidence intervals of the predictions. Bayes factors are used for evaluating the probability distributions of the predictions, which are essential to structural condition assessments, such as outlier identification and reliability analysis. The performance of the present BDLM has been successfully verified based on the simulated data and the real data obtained from the structural health monitoring system installed on the revolving structure.

ANFIS를 이용한 하천수위 예측 (Forecast of Stream Level Using ANFIS)

  • 최창원;이재응
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.132-136
    • /
    • 2007
  • 최근 지구온난화로 인한 이상기후의 영향으로 강우일수는 줄고 있으나 강수량은 예년과 비슷한 수준을 보이고 있다. 이로 인해 갈수기의 용수부족 현상은 더욱 심해지고. 장마철의 홍수피해와 게릴라성 집중호우로 인한 피해가 커지는 등 해가 갈수록 홍수 예경보의 중요성은 더욱 높아지고 있다. 그럼에도 불구하고 현재 홍수 예경보 체계는 몇 가지 문제를 가지고 있다. 기존 예경보 체계의 경우 한 번의 예측을 수행하기 위해 수반되는 전처리과정과 주계산과정을 거치는 동안 각 과정에서 발생한 오차들이 반복, 누적되어 최종 결과물(예측된 유출량) 속에 모두 포함된다. 또한 기존 체계에서는 유출모형을 적용하기 위해서 토양형. 피복상태 등에 관련된 매개변수들이 필요한데. 이러한 매개변수의 결정에 어려움이 있고. 불확실성을 갖고 있다. 본 연구에서는 불확실성을 적극적으로 인정하고 수학적으로 해석하려는 fuzzy 이론을 신경망 이론에 도입하여 홍수 예경보 시스템의 운영과정에서 발생하는 불확실성의 문제를 해결하고자 하였다. 본 연구에서 사용한 ANFIS(Adaptive Neuro-Fuzzy Inference System)은 data driven model(자료에 기반을 둔 모형)의 하나로 다음과 같은 장점을 가진다. 우선 data driven model은 유역의 물리적, 지형적 특성을 고려하지 않고(매개변수설정에서 발생하는 문제 해결 가능), 입력자료와 출력자료만을 고려하여 구축되는 모형이므로, 유역의 물리적 자료나 지형 자료와 같은 방대한 양의 자료 수집이 필요 없고, 일단 모형이 구축되면 자료의 입력만으로도 신뢰성 높은 결과를 단시간 내에 효율적으로 획득할 수 있다. 그리고 유역 내의 상황이 변화하더라도, 이들의 영향을 고려하여 쉽게 모형을 갱신할 수 있다. 마지막으로 모형의 구축 과정이 물리적 모형에 비해 비교적 간편하다는 장점이 있다. 본 연구에서는 ANFIS를 통해 탄천유역의 강수량 자료와 대곡교의 수위자료를 입력자료로 사용하여 대곡교의 수위를 예측하였다. 입력 자료는 시간차 계열의 강우량과 수위 자료를 사용하였으며 모형을 통하여 t+1, t+2, t+3 시간 후의 수위를 예측하였다.

  • PDF

Simplified Numerical Model of the Wind-driven Circulation with Emphasis on Distribution of the Tuman River Solid Run-off

  • Vanin, N.S.;Moshchenko, A.V.;Feldman, K.L.;Yurasov, G.I.
    • Ocean and Polar Research
    • /
    • 제22권2호
    • /
    • pp.81-90
    • /
    • 2000
  • Supposed construction of a large port in the mouth of Tuman River requires careful examination of possible unfavorable ecological consequences for the Far Eastern Federal Marine Reserve. Since the Tuman River is the largest source of suspended material and possible contaminants flowing into the sea, and in order to understand how this material is allocated in the coastal zone, analyses are needed to check possible pathways of water transport and circulation system in the region. Linearized shallow water equations were used for numerical simulation of the wind-driven circulation to the north off the Tuman River mouth. The model results satisfactorily agreed with in situ data. The model circulation patterns are largely dependent on the wind direction and are conformed by the distribution of bottom sediments, and by the location of organic carbon and some pollutants accumulation zones. The most unfavorable situation for the Marine Reserve is the case of the southwesterly wind; even with quite moderate wind, the waters polluted by the run-off from the Tuman River can attain the south section of the Marine Reserve during the diurnal period.

  • PDF

예지기술의 연구동향 및 모델기반 예지기술 비교연구 (A Survey on Prognostics and Comparison Study on the Model-Based Prognostics)

  • 최주호;안다운;강진혁
    • 제어로봇시스템학회논문지
    • /
    • 제17권11호
    • /
    • pp.1095-1100
    • /
    • 2011
  • In this paper, PHM (Prognostics and Health Management) techniques are briefly outlined. Prognostics, being a central step within the PHM, is explained in more detail, stating that there are three approaches - experience based, data-driven and model based approaches. Representative articles in the field of prognostics are also given in terms of the type of faults. Model based method is illustrated by introducing a case study that was conducted to the crack growth of the gear plate in UH-60A helicopter. The paper also addresses the comparison of the OBM (Overall Bayesian Method), which was developed by the authors with the PF (Particle Filtering) method, which draws great attention recently in prognostics, through the study on a simple crack growth problem. Their performances are examined by evaluating the metrics introduced by PHM society.

Modeling, Discovering, and Visualizing Workflow Performer-Role Affiliation Networking Knowledge

  • Kim, Haksung;Ahn, Hyun;Kim, Kwanghoon Pio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.691-708
    • /
    • 2014
  • This paper formalizes a special type of social networking knowledge, which is called "workflow performer-role affiliation networking knowledge." A workflow model specifies execution sequences of the associated activities and their affiliated relationships with roles, performers, invoked-applications, and relevant data. In Particular, these affiliated relationships exhibit a stream of organizational work-sharing knowledge and utilize business process intelligence to explore resources allotting and planning knowledge concealed in the corresponding workflow model. In this paper, we particularly focus on the performer-role affiliation relationships and their implications as organizational and business process intelligence in workflow-driven organizations. We elaborate a series of theoretical formalisms and practical implementation for modeling, discovering, and visualizing workflow performer-role affiliation networking knowledge, and practical details as workflow performer-role affiliation knowledge representation, discovery, and visualization techniques. These theoretical concepts and practical algorithms are based upon information control net methodology for formally describing workflow models, and the affiliated knowledge eventually represents the various degrees of involvements and participations between a group of performers and a group of roles in a corresponding workflow model. Finally, we summarily describe the implications of the proposed affiliation networking knowledge as business process intelligence, and how worthwhile it is in discovering and visualizing the knowledge in workflow-driven organizations and enterprises that produce massively parallel interactions and large-scaled operational data collections through deploying and enacting massively parallel and large-scale workflow models.

잡음음성인식을 위한 데이터 기반의 Jacobian 적응방식 (A Data-Driven Jacobian Adaptation Method for the Noisy Speech Recognition)

  • 정용주
    • 한국음향학회지
    • /
    • 제25권4호
    • /
    • pp.159-163
    • /
    • 2006
  • 본 논문에서는 잡음음성인식을 위한 데이터 기반의 향상된 Jacobian 적응 방식을 제안하였다. Jacobian 적응에서 필요로 하는 기준 HMM을 구성하기 위해서 기존에 주로 사용되던 모델결합 방식을 사용하는 대신에 잡음음성을 이용하여 직접 훈련하는 방식을 제안하였다. 이렇게 함으로서 기존의 방법에 비해서 잡음에 의한 음향모델의 변이를 보다 잘 처리할 수 있을 것으로 생각된다 제안된 방법에서는 Jacobian 행렬의 추정을 위해서 훈련과정에서 Baum-Welch 알고리듬을 사용하였다. 잡음음성에 대한 인식실험을 통해서 제안된 방식이 기존의 Jacobian 적응 방식 뿐 만 아니라 다른 형태의 모델적응 방식들에 비해서도 우수한 성능을 보임을 알 수 있었다.

Extraction of Geometric Components of Buildings with Gradients-driven Properties

  • Seo, Su-Young;Kim, Byung-Guk
    • 한국측량학회지
    • /
    • 제27권1호
    • /
    • pp.723-733
    • /
    • 2009
  • This study proposes a sequence of procedures to extract building boundaries and planar patches through segmentation of rasterized lidar data. Although previous approaches to building extraction have been shown satisfactory, there still exist needs to increase the degree of automation. The methodologies proposed in this study are as follows: Firstly, lidar data are rasterized into grid form in order to exploit its rapid access to neighboring elevations and image operations. Secondly, propagation of errors in raw data is taken into account for in assessing the quality of gradients-driven properties and further in choosing suitable parameters. Thirdly, extraction of planar patches is conducted through a sequence of processes: histogram analysis, least squares fitting, and region merging. Experimental results show that the geometric components of building models could be extracted by the proposed approach in a streamlined way.

Discrete event simulation of Maglev transport considering traffic waves

  • Cha, Moo Hyun;Mun, Duhwan
    • Journal of Computational Design and Engineering
    • /
    • 제1권4호
    • /
    • pp.233-242
    • /
    • 2014
  • A magnetically levitated vehicle (Maglev) system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS) formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.