• Title/Summary/Keyword: Data-driven method

Search Result 531, Processing Time 0.032 seconds

Coupling non-matching finite element discretizations in small-deformation inelasticity: Numerical integration of interface variables

  • Amaireh, Layla K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.71-93
    • /
    • 2019
  • Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.

Analysis of Estimation of Ultimate Lateral Capacity of Pile in Multi-Layered Soil Using CPT Results and Proposal of Modified Lateral Earth Pressure (다층조건에서 CPT를 이용한 말뚝의 극한수평지지력 평가 분석 및 수정 수평토압분포 제안)

  • Hong, Jung-Moo;Kyung, Doo-Hyun;Kang, Beong-Joon;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.47-57
    • /
    • 2009
  • In this study, the ultimate lateral load capacity of pile driven into multi-layered soil was estimated using cone penetration test results and a method was proposed to reflect multi-layered soil conditions. For multi-layered specimens prepared with different relative density at different layers, the cone penetration tests and lateral pile load tests were conducted. Based on the test results, measured and estimated values of the ultimate lateral load were compared and analyzed. The estimated results were obtained from the methods proposed by Broms (1964), Petrasovits & Award (1972) and Prasad & Chari (1999). The method was proposed for modifying the earth pressure distribution of Prasad & Chari (1999) to consider multi-layered soil conditions. From the analysis, it was seen that results obtained from the proposed method showed improvement with less data scatter similarly to those obtained from Broms (1964) and Petrasovits & Award (1972)'s methods.

Application of data-driven model reduction techniques in reactor neutron field calculations

  • Zhaocai Xiang;Qiafeng Chen;Pengcheng Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.2948-2957
    • /
    • 2024
  • High-order harmonic techniques can be used to recreate neutron flux distributions in reactor cores using the neutron diffusion equation. However, traditional source iteration and source correction iteration techniques have sluggish convergence rates and protracted calculation periods. The correctness of the implicitly restarted Arnoldi method (IRAM) in resolving the eigenvalue problems of the one-dimensional and two-dimensional neutron diffusion equations was confirmed by computing the benchmark problems SLAB_1D_1G and two-dimensional steady-state TWIGL using IRAM. By integrating Galerkin projection with Proper Orthogonal Decomposition (POD) techniques, a POD-Galerkin reduced-order model was developed and the IRAM model was used as the full-order model. For 14 macroscopic cross-section values, the TWIGL benchmark problem was perturbed within a 20% range. We extracted 100 sample points using the Latin hypercube sampling method, and 70% of the samples were used as the testing set to assess the performance of the reduced-order model The remaining 30% were utilized as the training set to develop the reduced-order model, which was employed to rebuild the TWIGL benchmark problem. The reduced-order model demonstrates good flexibility and can efficiently and accurately forecast the effective multiplication factor and neutron flux distribution in the core. The reduced-order model predicts keff and neutron flux distribution with a high degree of agreement compared to the full-order model. Additionally, the reduced-order model's computation time is only 10.18% of that required by the full-order model.The neutron flux distribution of the steady-state TWIGL benchmark was recreated using the reduced-order model. The obtained results indicate that the reduced-order model can accurately predict the keff and neutron flux distribution of the steady-state TWIGL benchmark.Overall, the proposed technique not only has the potential to accurately project neutron flux distributions in transient settings, but is also relevant for reconstructing neutron flux distributions in steady-state conditions; thus, its applicability is bound to increase in the future.

A study on spatial onset characteristics of flash drought based on GLDAS evaporative stress in the Korean Peninsula (GLDAS 증발 스트레스 기반 한반도 돌발가뭄의 공간적 발생 특성 연구)

  • Kang, Minsun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.631-639
    • /
    • 2023
  • Flash drought (FD), characterized by the rapid onset and intensification, can significantly impact ecosystems and induce immediate water stress. A more comprehensive understanding of the causes and characteristics of FD events is required to enhance drought monitoring. Therefore, we investigated the FD events took place over the Korean peninsula using Global Land Data Assimilation System (GLDAS) data from 2012 to 2022. We first detected FD events using the stress-based method (Standardized Evaporative Stress Ratio, SESR), and analyzed the frequency and duration of FDs. The FD events were classified into three cases based on the variations in Actual Evapotranspiration (AET) and potential Evapotranspiration (PET), and spatially analyzed. Results revealed that there are regional disparities in frequency and duration of FDs, with a mean frequency of 6.4 and duration of 31 days. When classified into Case 1 (normal condition), Case 2 (AET-driven), and Case 3 (PET-driven), we found that Case 2 FDs emerged approximately 1.5 times more frequently than those driven by PET (Case 3) across the Korean peninsula. Case 2 FDs were found to be induced under water-limited conditions, and led both AET and PET to be decreased. Conversely, Case 3 FDs occurred under energy-limited conditions, with increase in both. Case 2 FDs predominantly affected the northwestern and central-southern agricultural regions, while Case 3 occurred in the eastern region, characterized by forested land cover. These findings offers insights into our understanding of FDs over the Korean peninsula, considering climate factors, land cover, and water availability.

Comparative analysis of wavelet transform and machine learning approaches for noise reduction in water level data (웨이블릿 변환과 기계 학습 접근법을 이용한 수위 데이터의 노이즈 제거 비교 분석)

  • Hwang, Yukwan;Lim, Kyoung Jae;Kim, Jonggun;Shin, Minhwan;Park, Youn Shik;Shin, Yongchul;Ji, Bongjun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.209-223
    • /
    • 2024
  • In the context of the fourth industrial revolution, data-driven decision-making has increasingly become pivotal. However, the integrity of data analysis is compromised if data quality is not adequately ensured, potentially leading to biased interpretations. This is particularly critical for water level data, essential for water resource management, which often encounters quality issues such as missing values, spikes, and noise. This study addresses the challenge of noise-induced data quality deterioration, which complicates trend analysis and may produce anomalous outliers. To mitigate this issue, we propose a noise removal strategy employing Wavelet Transform, a technique renowned for its efficacy in signal processing and noise elimination. The advantage of Wavelet Transform lies in its operational efficiency - it reduces both time and costs as it obviates the need for acquiring the true values of collected data. This study conducted a comparative performance evaluation between our Wavelet Transform-based approach and the Denoising Autoencoder, a prominent machine learning method for noise reduction.. The findings demonstrate that the Coiflets wavelet function outperforms the Denoising Autoencoder across various metrics, including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Squared Error (MSE). The superiority of the Coiflets function suggests that selecting an appropriate wavelet function tailored to the specific application environment can effectively address data quality issues caused by noise. This study underscores the potential of Wavelet Transform as a robust tool for enhancing the quality of water level data, thereby contributing to the reliability of water resource management decisions.

Efficient Parallel Spatial Join Processing Method in a Shared-Nothing Database Cluster System (비공유 공간 클러스터 환경에서 효율적인 병렬 공간 조인 처리 기법)

  • Chung, Warn-Ill;Lee, Chung-Ho;Bae, Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.10D no.4
    • /
    • pp.591-602
    • /
    • 2003
  • Delay and discontinuance phenomenon of service are cause by sudden increase of the network communication amount and the quantity consumed of resources when Internet users are driven excessively to a conventional single large database sewer. To solve these problems, spatial database cluster consisted of several single nodes on high-speed network to offer high-performance is risen. But, research about spatial join operation that can reduce the performance of whole system in case process at single node is not achieved. So, in this paper, we propose efficient parallel spatial join processing method in a spatial database cluster system that uses data partitions and replications method that considers the characteristics of space data. Since proposed method does not need the creation step and the assignment step of tasks, and does not occur additional message transmission between cluster nodes that appear in existent parallel spatial join method, it shows performance improvement of 23% than the conventional parallel R-tree spatial join for a shared-nothing architecture about expensive spatial join queries. Also, It can minimize the response time to user because it removes redundant refinement operation at each cluster node.

Acoustic 2-D Full-waveform Inversion with Initial Guess Estimated by Traveltime Tomography (주시 토모그래피와 음향 2차원 전파형 역산의 적용성에 관한 연구)

  • Han Hyun Chul;Cho Chang Soo;Suh Jung Hee;Lee Doo Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • Seismic tomography has been widely used as high resolution subsurface imaging techniques in engineering applications. Although most of the techniques have been using travel time inversion, waveform method is being driven forward owing to the progress of computational environments. Although full-waveform inversion method has been known as the best method in terms of model resolving power without high-frequency restriction and weak scattering approximation, it has practical disadvantage that it is apt to get stuck in local minimum if the initial guess is far from the actual model and it consumes so much time to calculate. In this study, 2-D full-waveform inversion algorithm in acoustic medium is developed, which uses result of traveltime tomography as initial model. From the application on synthetic data, it is proved that this approach can efficiently reduce the problem of conventional approaches: our algorithm shows much faster convergence rate and improvement of model resolution. Result of application on physical modeling data also shows much improvement. It is expected that this algorithm can be applicable to real data.

  • PDF

Determination of a Grain Size for Reducing Cache Miss Rate of Direct-Mapped Caches (직접 사상 캐쉬의 캐쉬 실패율을 감소시키기 위한 성김도 정책)

  • Jung, In-Bum;Kong, Ki-Sok;Lee, Joon-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.7
    • /
    • pp.665-674
    • /
    • 2000
  • In data parallel programs incurring high cache locality, the choice of grain sizes affects cache performance. Though the grain sizes chosen provide fair load balance among processors, the grain sizes that ignore underlying caching effect result in address interferences between grains allocated to a processor. These address interferences appear to have a negative impact on the cache locality, since they result in cache conflict misses. To address this problem, we propose a best grain size driven from a cache size and the number of processors based on direct mapped cache's characteristic. Since the proposed method does not map the grains to the same location in the cache, cache conflict misses are reduced. Simulation results show that the proposed best grain size substantially improves the performance of tested data parallel programs through the reduction of cache misses on direct-mapped caches.

  • PDF

Full-text databases as a means for resource sharing (자원공유 수단으로서의 전문 데이터베이스)

  • 노진구
    • Journal of Korean Library and Information Science Society
    • /
    • v.24
    • /
    • pp.45-79
    • /
    • 1996
  • Rising publication costs and declining financial resources have resulted in renewed interest among librarians in resource sharing. Although the idea of sharing resources is not new, there is a sense of urgency not seen in the past. Driven by rising publication costs and static and often shrinking budgets, librarians are embracing resource sharing as an idea whose time may finally have come. Resource sharing in electronic environments is creating a shift in the concept of the library as a warehouse of print-based collection to the idea of the library as the point of access to need information. Much of the library's material will be delivered in electronic form, or printed. In this new paradigm libraries can not be expected to su n.0, pport research from their own collections. These changes, along with improved communications, computerization of administrative functions, fax and digital delivery of articles, advancement of data storage technologies, are improving the procedures and means for delivering needed information to library users. In short, for resource sharing to be truly effective and efficient, however, automation and data communication are essential. The possibility of using full-text online databases as a su n.0, pplement to interlibrary loan for document delivery is examined. At this point, this article presents possibility of using full-text online databases as a means to interlibrary loan for document delivery. The findings of the study can be summarized as follows : First, turn-around time and the cost of getting a hard copy of a journal article from online full-text databases was comparable to the other document delivery services. Second, the use of full-text online databases should be considered as a method for promoting interlibrary loan services, as it is more cost-effective and labour saving. Third, for full-text databases to work as a document delivery system the databases must contain as many periodicals as possible and be loaded on as many systems as possible. Forth, to contain many scholarly research journals on full-text databases, we need guidelines to cover electronic document delivery, electronic reserves. Fifth, to be a full full-text database, more advanced information technologies are really needed.

  • PDF

Design and Implementation of Real-Time Parallel Engine for Discrete Event Wargame Simulation (이산사건 워게임 시뮬레이션을 위한 실시간 병렬 엔진의 설계 및 구현)

  • Kim, Jin-Soo;Kim, Dae-Seog;Kim, Jung-Guk;Ryu, Keun-Ho
    • The KIPS Transactions:PartA
    • /
    • v.10A no.2
    • /
    • pp.111-122
    • /
    • 2003
  • Military wargame simulation models must support the HLA in order to facilitate interoperability with other simulations, and using parallel simulation engines offer efficiency in reducing system overhead generated by propelling interoperability. However, legacy military simulation model engines process events using sequential event-driven method. This is due to problems generated by parallel processing such as synchronous reference to global data domains. Additionally. using legacy simulation platforms result in insufficient utilization of multiple CPUs even if a multiple CPU system is under use. Therefore, in this paper, we propose conversing the simulation engine to an object model-based parallel simulation engine to ensure military wargame model's improved system processing capability, synchronous reference to global data domains, external simulation time processing, and the sequence of parallel-processed events during a crash recovery. The converted parallel simulation engine is designed and implemented to enable parallel execution on a multiple CPU system (SMP).