• Title/Summary/Keyword: Data-driven based Method

Search Result 297, Processing Time 0.036 seconds

Weighted Finite State Transducer-Based Endpoint Detection Using Probabilistic Decision Logic

  • Chung, Hoon;Lee, Sung Joo;Lee, Yun Keun
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.714-720
    • /
    • 2014
  • In this paper, we propose the use of data-driven probabilistic utterance-level decision logic to improve Weighted Finite State Transducer (WFST)-based endpoint detection. In general, endpoint detection is dealt with using two cascaded decision processes. The first process is frame-level speech/non-speech classification based on statistical hypothesis testing, and the second process is a heuristic-knowledge-based utterance-level speech boundary decision. To handle these two processes within a unified framework, we propose a WFST-based approach. However, a WFST-based approach has the same limitations as conventional approaches in that the utterance-level decision is based on heuristic knowledge and the decision parameters are tuned sequentially. Therefore, to obtain decision knowledge from a speech corpus and optimize the parameters at the same time, we propose the use of data-driven probabilistic utterance-level decision logic. The proposed method reduces the average detection failure rate by about 14% for various noisy-speech corpora collected for an endpoint detection evaluation.

A Vorticity-Based Method for Incompressible Viscous Flow Analysis (와도를 기저로 한 비압축성 점성유동해석 방법)

  • Suh J. C.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF

Data-driven SIRMs-connected FIS for prediction of external tendon stress

  • Lau, See Hung;Ng, Chee Khoon;Tay, Kai Meng
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.55-71
    • /
    • 2015
  • This paper presents a novel harmony search (HS)-based data-driven single input rule modules (SIRMs)-connected fuzzy inference system (FIS) for the prediction of stress in externally prestressed tendon. The proposed method attempts to extract causal relationship of a system from an input-output pairs of data even without knowing the complete physical knowledge of the system. The monotonicity property is then exploited as an additional qualitative information to obtain a meaningful SIRMs-connected FIS model. This method is then validated using results from test data of the literature. Several parameters, such as initial tendon depth to beam ratio; deviators spacing to the initial tendon depth ratio; and distance of a concentrated load from the nearest support to the effective beam span are considered. A computer simulation for estimating the stress increase in externally prestressed tendon, ${\Delta}f_{ps}$, is then reported. The contributions of this paper is two folds; (i) it contributes towards a new monotonicity-preserving data-driven FIS model in fuzzy modeling and (ii) it provides a novel solution for estimating the ${\Delta}f_{ps}$ even without a complete physical knowledge of unbonded tendons.

Prediction-Based Parallel Gate-Level Timing Simulation Using Spatially Partial Simulation Strategy (공간적 부분시뮬레이션 전략이 적용된 예측기반 병렬 게이트수준 타이밍 시뮬레이션)

  • Han, Jaehoon;Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.3
    • /
    • pp.57-64
    • /
    • 2019
  • In this paper, an efficient prediction-based parallel simulation method using spatially partial simulation strategy is proposed for improving both the performance of the event-driven gate-level timing simulation and the debugging efficiency. The proposed method quickly generates the prediction data on-the-fly, but still accurately for the input values and output values of parallel event-driven local simulations by applying the strategy to the simulation at the higher abstraction level. For those six designs which had used for the performance evaluation of the proposed strategy, our method had shown about 3.7x improvement over the most general sequential event-driven gate-level timing simulation, 9.7x improvement over the commercial multi-core based parallel event-driven gate-level timing simulation, and 2.7x improvement over the best of previous prediction-based parallel simulation results, on average.

Improved Acoustic Modeling Based on Selective Data-driven PMC

  • Kim, Woo-Il;Kang, Sun-Mee;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 2002
  • This paper proposes an effective method to remedy the acoustic modeling problem inherent in the usual log-normal Parallel Model Composition intended for achieving robust speech recognition. In particular, the Gaussian kernels under the prescribed log-normal PMC cannot sufficiently express the corrupted speech distributions. The proposed scheme corrects this deficiency by judiciously selecting the 'fairly' corrupted component and by re-estimating it as a mixture of two distributions using data-driven PMC. As a result, some components become merged while equal number of components split. The determination for splitting or merging is achieved by means of measuring the similarity of the corrupted speech model to those of the clean model and the noise model. The experimental results indicate that the suggested algorithm is effective in representing the corrupted speech distributions and attains consistent improvement over various SNR and noise cases.

  • PDF

Data-Driven Batch Processing for Parameter Calibration of a Sensor System (센서 시스템의 매개변수 교정을 위한 데이터 기반 일괄 처리 방법)

  • Kyuman Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.475-480
    • /
    • 2023
  • When modeling a sensor system mathematically, we assume that the sensor noise is Gaussian and white to simplify the model. If this assumption fails, the performance of the sensor model-based controller or estimator degrades due to incorrect modeling. In practice, non-Gaussian or non-white noise sources often arise in many digital sensor systems. Additionally, the noise parameters of the sensor model are not known in advance without additional noise statistical information. Moreover, disturbances or high nonlinearities often cause unknown sensor modeling errors. To estimate the uncertain noise and model parameters of a sensor system, this paper proposes an iterative batch calibration method using data-driven machine learning. Our simulation results validate the calibration performance of the proposed approach.

Preliminary Uncertainty Analysis to Build a Data-Driven Prediction Model for Water Quality in Paldang Dam (팔당댐 유역의 데이터 기반 수질 예측 모형 구성을 위한 사전 불확실성 분석)

  • Lee, Eun Jeong;Keum, Ho Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.24-35
    • /
    • 2022
  • For water quality management, it is necessary to continuously improve the forecasting by analyzing the past water quality, and a Data-driven model is emerging as an alternative. Because the Data-driven model is built based on a wide range of data, it is essential to apply the correlation analysis method for the combination of input variables to obtain more reliable results. In this study, the Gamma Test was applied as a preceding step to build a faster and more accurate data-driven water quality prediction model. First, a physical-based model (HSPF, EFDC) was operated to produce daily water quality reflecting the complexity of the watershed according to various hydrological conditions for Paldang Dam. The Gamma Test was performed on the water quality at the water quality prediction site (Paldangdam2) and major rivers flowing into the Paldang Dam, and the method of selecting the optimal input data combination was presented through the analysis results (Gamma, Gradient, Standar Error, V-Ratio). As a result of the study, the selection criteria for a more efficient combination of input data that can save time by omitting trial and error when building a data-driven model are presented.

A Study on the Noisy Speech Recognition Based on the Data-Driven Model Parameter Compensation (직접데이터 기반의 모델적응 방식을 이용한 잡음음성인식에 관한 연구)

  • Chung, Yong-Joo
    • Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.247-257
    • /
    • 2004
  • There has been many research efforts to overcome the problems of speech recognition in the noisy conditions. Among them, the model-based compensation methods such as the parallel model combination (PMC) and vector Taylor series (VTS) have been found to perform efficiently compared with the previous speech enhancement methods or the feature-based approaches. In this paper, a data-driven model compensation approach that adapts the HMM(hidden Markv model) parameters for the noisy speech recognition is proposed. Instead of assuming some statistical approximations as in the conventional model-based methods such as the PMC, the statistics necessary for the HMM parameter adaptation is directly estimated by using the Baum-Welch algorithm. The proposed method has shown improved results compared with the PMC for the noisy speech recognition.

  • PDF

Neural Network based Aircraft Engine Health Management using C-MAPSS Data (C-MAPSS 데이터를 이용한 항공기 엔진의 신경 회로망 기반 건전성관리)

  • Yun, Yuri;Kim, Seokgoo;Cho, Seong Hee;Choi, Joo-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.17-25
    • /
    • 2019
  • PHM (Prognostics and Health Management) of aircraft engines is applied to predict the remaining useful life before failure or the lifetime limit. There are two methods to establish a predictive model for this: The physics-based method and the data-driven method. The physics-based method is more accurate and requires less data, but its application is limited because there are few models available. In this study, the data-driven method is applied, in which a multi-layer perceptron based neural network algorithms is applied for the life prediction. The neural network is trained using the data sets virtually made by the C-MAPSS code developed by NASA. After training the model, it is applied to the test data sets, in which the confidence interval of the remaining useful life is predicted and validated by the actual value. The performance of proposed method is compared with previous studies, and the favorable accuracy is found.

A Review on Prognostics of Polymer Electrolyte Fuel Cells (고분자전해질 연료전지 예지 진단 기술)

  • LEE, WON-YONG;KIM, MINJIN;OH, HWANYEONG;SOHN, YOUNG-JUN;KIM, SEUNG-GON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.339-356
    • /
    • 2018
  • Although fuel cell systems have advantages in terms of electric efficiency and environmental impact compared with conventional power systems, fuel cell systems have not been deployed widely due to their low reliability and high price. In order to guarantee the lifetime of 10 years, which is the commercialization goal of Polymer electrolyte fuel cells (PEFCs), it is necessary to improve durability and reliability through optimized operation and maintenance technologies. Due to the complexity of components and their degradation phenomena, it's not easy to develop and apply the diagnose and prognostic methodologies for PEFCs. The purpose of the paper is to show the current state on PEFC prognostic technology for condition based maintenance. For the prognostic of PEFCs, the model driven method, the data-driven, and the hybrid method can be applied. The methods reviewed in this paper can contribute to the development of technologies to reduce the life cycle cost of fuel cells and increase the reliability through prognostics-based health management system.