The purpose of this study was to investigate the enforcement strategy for Consumer Service marketing of an e-Commerce shopping mall. An e-CRM for a Cosmetic e-Commerce shopping mall, Data Warehousing(DW) component, analysis of data mining of the DW, and web applications and strategies had to developed for marketing of consumer service satisfaction. The major findings were as follows: An RFM analysis was used for consumer classification, which is a fundamental process of e-CRM application. The components of the DW were web sales data and consumer data fields. The visual process of consumer segmentations (superior consumer class) for e-CRM solutions is presented. The association analysis algorithm of data mining to up-selling and cross-selling indicates an association rule. These e-CRM results apply web DB marketing and operating principles to a shopping mall. Therefore, the system applications of e-CRM to Consumer services indicate a marketing strategy for consumer-oriented management.
최근 들어, 사용자가 주변 환경 및 요구 정보의 변화를 의식하지 않고 작업 환경과 수행하는 일에 집중하도록 배려하는 인간 중심 컴퓨팅 환경에 대한 연구 개발이 활발히 진행되고 있다. 그러나 이러한 컴퓨팅 환경에서 미들웨어는 사용자에게 RFID센서로부터 들어오는 대량의 정보에 대한 처리 부하를 줄이기 위하여 분석이 끝난 스트림 데이터를 삭제한다. 따라서 사용자의 데이터 웨어하우징이나 데이터마이닝에 필요한 확률, 통계 정보에 대한 요청, 또는 반복적이면서 동일한 데이터에 대한 요청을 처리할 수 없다는 문제점을 가진다. 본 논문에서는 기존의 미들웨어에서 문제가 되었던 과거 스트림 데이터 재사용 문제를 해결하기 위해, 사용자가 빈번하게 요구하는 데이터들을 스냅샷을 가지는 다중 레벨 공간 DBMS에서 관리하는 센서미들웨어 구조를 설계하였다. 본 시스템은 사용자가 요구하는 데이터 마이닝이나 데이터 웨어하우징과 같은 과거 스트림 정보를 사용한 서비스 요청을 위해, 미들웨어에서 필터링된 과거 스트림 데이터를 디스크 데이터베이스에서 관리한다. 그리고 디스크 데이터베이스에 저장된 스트림 데이터 중에서 사용자에 대한 높은 재사용 빈도를 가지는 데이터들을 스냅샷의 형태로 메모리 데이터베이스에 저장하고 이를 관리한다. 또한, 본 시스템은 메모리 데이터베이스에 저장된 스냅샷 데이터의 높은 데이터 재사용성과 신속한 서비스를 유지하기 위해서 주기적인 메모리 데이터베이스 관리 정책을 수행한다. 본 논문은 기존의 미들웨어에서의 스트림 데이터에 대한 반복적인 요청, 또는 과거 스트림 데이터를 이용한 정책 결정 서비스 요청에 대한 서비스를 제공할 수 없는 문제들을 해결하였다. 그리고 메모리에 저장된 데이터에 대한 높은 데이터 재사용성을 유지함으로서 사용자에게 지속적으로 다양하고 신속한 데이터 서비스를 제공한다.
The empirical studies on the implementation of data warehousing systems (DWS) are lacking while there exist a number of studies on the implementation of IS. This study intends to examine the factors affecting the implementation success of DWS. The study adopts the empirical analysis of the sample of 112 responses from DWS practitioners. The study results suggest several implications for researchers and practitioners. First, when the support from top management becomes great, the implementation success of DWS in organizational aspects is more likely. When the support from top management exists, users are more likely to be encouraged to use DWS, and organizational resistance to use DWS is well coped with increasing the possibility of implementation success of DWS. The support of resource increases the implementation success of DWS in project aspects while it is not significantly related to the implementation success of DWS in organizational aspects. The support of funds, human resources, and other efforts enhances the possibility of successful implementation of project; the project does not exceed the time and resource budgets and meet the functional requirements. The effect of resource support, however, is not significantly related to the organizational success. The user involvement in systems implementation affects the implementation success of DWS in organizational and project aspects. The success of DWS implementation is significantly related to the users' commitment to the project and the proactive involvement in the implementation tasks. users' task. The observation of the behaviors of competitors which possibly increases data quality does not affect the implementation success of DWS. This indicates that the quality of data such as data consistency and accuracy is not ensured through the understanding of the behaviors of competitors, and this does not affect the data integration and the successful implementation of DWS projects. The prototyping for the DWS implementation positively affects the implementation success of DWS. This indicates that the extent of understanding requirements and the communication among project members increases the implementation success of DWS. Developing the prototypes for DWS ensures the acquirement of accurate or integrated data, the flexible processing of data, and the adaptation into new organizational conditions. The extent of consulting activities in DWS projects increases the implementation success of DWS in project aspects. The continuous support for consulting activities and technology transfer enhances the adherence to the project schedule preventing the exceeding use of project budget and ensuring the implementation of intended system functions; this ultimately leads to the successful implementation of DWS projects. The research hypothesis that the capability of project teams affects the implementation success of DWS is rejected. The technical ability of team members and human relationship skills themselves do not affect the successful implementation of DWS projects. The quality of the system which provided data to DWS affects the implementation success of DWS in technical aspects. The standardization of data definition and the commitment to the technical standard increase the possibility of overcoming the technical problems of DWS. Further, the development technology of DWS affects the implementation success of DWS. The hardware, software, implementation methodology, and implementation tools contribute to effective integration and classification of data in various forms. In addition, the implementation success of DWS in organizational and project aspects increases the data quality and system quality of DWS while the implementation success of DWS in technical aspects does not affect the data quality and system quality of DWS. The data and systems quality increases the effective processing of individual tasks, and reduces the decision making times and efforts enhancing the perceived benefits of DWS.
한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
/
pp.448-455
/
2001
Recently, many enterprises have attempted to capitalize knowledge assets on data warehouse (DW). It has been recognized as strategic core process to create corporate competitive advantage and implement enterprise e-biz strategies. However, most approaches to represent knowledge and decision process have limits in considering various knowledge types, their relationships and continuity in knowledge formulation. In addition, they are so inclined to one side such as concept-oriented frameworks or technology-oriented ones. They lack universal and wide-ranging features. This paper presents a comprehensive methodology to accumulate knowledge capital on DW via a properly grained hypermedia model. The methodology consists of three phases: knowledge requirement elicitation, hypermedia modeling, and system implementation. A real-life case for medical DW development is presented to demonstrate the usefulness of the proposed methodology. This methodology is effective when an organization accumulates knowledge assets to put the corporate e-biz or cre-biz strategy into practice.
본 논문에서는 교통데이터 웨어 하우스에서 데이터 품질 관리를 위한 통합기법을 제안한다. 고속도로 교통관리시스템(FTMS)과 우회도로 교통정보시스템(ARTIS) 으로부터 대용량 교통데이터를 수집하여 데이터 웨어하우스를 구축하기 위한 방안을 기술하고, 다양한 분석을 위한 고품질 교통데이터를 제공하기 위한 통합 데이터 품질관리 기법을 제안하고 구현 평가한다. 제안된 통합 데이터 품질관리 기법을 활용하면 연구자들에게 검증된 고품질 교통데이터를 제공할 수 있고, 데이터처리와 평가를 위한 별도의 비용을 절감할 수 있을 것으로 기대된다.
Previous research on data extraction and integration for data warehousing has concentrated mainly on the relational DBMS or partly on the object-oriented DBMS. Mostly, it describes issues related with the change data (deltas) capture and the incremental update by using the triggering technique of active database systems. But, little attention has been paid to data extraction approaches from other types of source systems like hierarchical DBMS, etc. and from source systems without triggering capability. This paper argues, from the practical point of view, that we need to consider not only the types of information sources and capabilities of ETT tools but also other factors of source systems such as operational characteristics (i.e., whether they support DBMS log, user log or no log, timestamp), and DBMS characteristics (i.e., whether they have the triggering capability or not, etc), in order to find out appropriate data extraction techniques that could be applied to different source systems. Having applied several different data extraction techniques (e.g., DBMS log, user log, triggering, timestamp-based extraction, file comparison) to S bank's source systems (e.g., IMS, DB2, ORACLE, and SAM file), we discovered that data extraction techniques available in a commercial ETT tool do not completely support data extraction from the DBMS log of IMS system. For such IMS systems, a new date extraction technique is proposed which first creates Index database and then updates the data warehouse using the Index database. We illustrates this technique using an example application.
Data Warehouses integrate data from multiple heterogeneous information sources and transform them into a multidimensional representation for decision support applications. Data warehousing has emerged as one of the most powerful tools in delivering information to users. Most previous researches have focused on marketing, customer service, financing, and insurance industry. Further, relatively less research has been done on data warehouse systems in the complex manufacturing industry such as ship production, which is characterized complex product structures and production processes. In the ship production, data warehouse systems is a requisite for effective cost analysis because collecting and analysis of diverse and large of cost-related(material/production cost, productivity) data in its operational systems, was becoming increasingly cumbersome and time consuming. This paper proposes architecture of the data warehouse systems to support cost analysis in the ship production. Also, in order to illustrate the usefulness of the proposed architecture, the prototype system is designed and implemented with the object of the enterprise of producing a large-scale ship.
Yu, Ning;Yu, Zeng;Gu, Feng;Li, Tianrui;Tian, Xinmin;Pan, Yi
Journal of Information Processing Systems
/
제13권2호
/
pp.204-214
/
2017
Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.
A personalized product recommendation is an enabling mechanism to overcome information overload occurred when shopping in an Internet marketplace. Collaborative filtering has been known to be one of the most successful recommendation methods, but its application to e-commerce has exposed well-known limitations such as sparsity and scalability, which would lead to poor recommendations. This paper suggests a personalized recommendation methodology by which we are able to get further effectiveness and quality of recommendations when applied to an Internet shopping mall. The suggested methodology is based on a variety of data mining techniques such as web usage mining, decision tree induction, association rule mining and the product taxonomy. For the evaluation of the methodology, we implement a recommender system using intelligent agent and data warehousing technologies.
International Journal of Computer Science & Network Security
/
제24권6호
/
pp.109-118
/
2024
The world today is advancing towards a digital solution for every indusial domain varying from advanced engineering and medicine to training and management. The supply cycles can only be boosted via an effective management of the warehouse and a stronger hold over the logistics and inventory insights. RFID technology has been an open source tool for various MNCs and corporal organization who have progressed along a considerable drift on the charts. RFID is a methodology of analysing the warehouse and logistic data and create useful information in line to the past trends and future forecasts. The method has a high tactical accuracy and has been seen providing up to 99.57% accurate insights for the future cycle, based on the organizational capabilities and available resources. This paper discusses the implementation of RFID on field and provides results of datasets retrieved from controlled data of a practical warehouse and logistics system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.