Quantifying crop production is one of the most important applications of remote sensing in which the temporal and up-to-date data can play very important role in avoiding any immediate insufficiency in agricultural production. A combination of climatic data and biophysical parameters derived from Landsat7 ETM+ was used to develop a mathematical model for wheat yield forecast in different geographically wide Wheat growing districts in Egypt. Leaf Area Index (LAI) and fraction of Absorbed Photosynthetically Active Radiation (fAPAR) with temperature were used in the modeling. The model includes three sub-models representing the correlation between the reported yield and each individual variable. Simulation results using district statistics showed high accuracy of the derived correlations to estimate wheat production with a percentage standard error (%S.E.) of 1.5% in El- Qualyobia district and average (%S.E.) of 7% for the whole wheat areas.
International journal of advanced smart convergence
/
v.13
no.3
/
pp.335-344
/
2024
This study explores advanced machine learning techniques for improving crop yield prediction in smart farming, utilizing multi-temporal spectral data from drone-based multispectral imagery. Conducted in garlic orchards in Andong, Gyeongbuk Province, South Korea, the research examines the effectiveness of various vegetation indices and cutting-edge models, including LSTM, CNN, Random Forest, and XGBoost. By integrating these models with the Analytic Hierarchy Process (AHP), the study systematically evaluates the factors that influence prediction accuracy. The integrated approach significantly outperforms single models, offering a more comprehensive and adaptable framework for yield prediction. This research contributes to precision agriculture by providing a robust, AI-driven methodology that enhances the sustainability and efficiency of farming practices.
Magazine of the Korean Society of Agricultural Engineers
/
v.38
no.2
/
pp.97-107
/
1996
This study was performed to derive the formula of sediment yield and predict the sediment elevation for fresh desalted reservoirs. Data analyzed was from 3 fresh desalted reservoirs of Sapkyo, Asan, and Namyang. Average sediment yield calculated from the sediment survey data was $279m^3/km^2/$ year for Sapkyo lake, $523m^3/km^2/$ year for Namyang lake, and $190m^3/km^2/$ year for Asan lake. The trap efficiency for Sapkyo lake was 63%. The formula of sediment yield was derived as $Q_s=6,461{\times}A{^-0.44}$ for fresh desalted reservoir. Sediment yield in fresh desalted reservoirs was much higher than that in inland reservoirs located in the same watershed, because of long trap time in fresh desalted reservoirs.
KSCE Journal of Civil and Environmental Engineering Research
/
v.13
no.1
/
pp.121-130
/
1993
The major objective of this study is to develop practical methods for estimating sediment yield rates of medium size watersheds of which areas range from 200 to $2,000km^2$. For this purpose, this study adopts an empirical method of statistical approach and another empirical method of weighting the watershed characteristics factors. A total of 13 data points for sediment yield rate, including five data points from reservoir deposit data and eight data points from sampled river-sediment data have been collected. Meanwhile, seven factors that may affect the sediment yield rate of a watershed have been selected. They are drainage density, rainfall erosivity, ground cover and land use, soil erodibility, topography, river-bed material characteristics, and watershed area. In the companion paper following this paper, methods for estimating sediment yield rate are to be developed using the 13 data points collected and seven watershed characteristics factors selected in this study.
Data from purebred and crossbred cattle involving Holstein and the Local breed in Bangladesh were used to estimate the genetic effects on average daily milk yield and birth weight A total of 877 records on average daily milk yield for 4 types of breed groups and a total of 418 records on birth weight for 5 breed groups were analyzed. Two different methods were applied in this study; the least squares analysis of variance approach and the linear regression approach. Breed group effects were highly significant for both average daily milk yield and birth weight. The result showed that straightbred Holstein produced the highest milk yield and the 7/8 crosses ranked highest in birth weight For the two traits, the additive breed effect was highly significant, whereas the individual heterosis effect was not significant. Furthermore, this study showed a negative maternal heterosis for average daily milk yields and a positive maternal heterosis for birth weight Comparing the breed least squares means obtained from the linear regression approach revealed that straightbred Holstein produced the highest average milk yield and the 3/4 crosses were predicted to have the largest birth weight. It is indicated that the linear regression approach can adequately separate the genetic component of performance, estimate unknown crossbreeding parameters and predict unknown performance of crosses which are not include in the original data.
The Journal of Asian Finance, Economics and Business
/
v.7
no.11
/
pp.23-31
/
2020
This paper investigates the impact of monetary policy independence shock on bond yield by allowing for heterogeneous coefficients in the model based on panel data for 19 developing countries using quarterly data from 1991 to 2016. First, we estimate the model using conventional panel VAR estimation with the assumption of homogeneous coefficients across countries. Second, by performing Chow and Roy-Zellner tests to check the homogeneity assumption, we find that the assumption does not hold in the model. Third, we apply a mean-group estimation for panel VAR as a solution for heterogeneity panel model. The results reveal that central bank independence is effective in reducing bond yield with the maximum at period 6 after the shock. Shock one standard deviation bond yield has a negative effect on consumption and investment. We determine that central bank independence has a contradictory effect on real activity; a negative effect on consumption but a positive influence on investment for the first two years after the shock. Additionally, we split our sample into three groups to make the subgroups pool. Our empirical result shows that monetary policy independence shock reduces bond yield. Meanwhile, the response of economic activity to bond yield varies for all three groups.
The optimal yield is defined as the amount of groundwater that maintains a dynamic equilibrium state of the groundwater system over a long period. We examined the current problems, improvements, and methods for estimating the optimal groundwater yield in Korea, considering sustainable groundwater development. The optimal yield for individual wells and the sustainable yield for the entire groundwater basin were reviewed. Generally, the optimal yield for individual wells can be determined using long-term pumping and step drawdown tests. The optimal yield can be determined by groundwater quantity and quality, economic, and water use rights factors. The optimal yield of individual wells in the groundwater basin must be determined within the total sustainable amount of the entire groundwater basin, such that the optimal yield of a new well must be less than the remaining total sustainable amount, exempting the total optimal yield of the existing wells. Therefore, the optimal yield may be determined based on the estimated optimal yield at least twice per year. In addition, if groundwater level and pumping quantity data for at least one year are available, it may be effective to use the Hill, Harding, and zero groundwater-level change methods to re-estimate the optimal yield.
Growth and yield prediction methods, ranging from whole-stand models to individual-tree models, have been developed for forest types managed for wood production. The resultant models are used for a host of purposes including inventory updating, management planning, evaluation of silvicultural alternatives, and harvest scheduling. Because of the large investment in developing growth and yield models for improved genotypes and silvicultural practices for loblolly pine (Pinus taeda) in the Southern United States, this region serves to illustrate approaches for modelling intensively managed forests. Analytical methods and computing power generally do not restrict development of reliable growth and yield models. However, long-term empirical observations on stand development, which are time consuming and expensive to obtain, often limit modelling efforts. Given that growth and yield models are used to project present volumes and to evaluate alternative treatment effects, data of both the inventory type and the experimental type are needed. Data for developing stand simulators for loblolly pine plantations have been obtained from a combination of permanent plots in operational forest stands and silvicultural experiments; these data collection efforts are described and summarized. Modelling is essential for integrating and synthesizing diverse information, identifying knowledge gaps, and making informed decisions. The questions being posed today are more complex than in the past, thus further accentuating the need for comprehensive models for stand development.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.34
no.4
/
pp.383-390
/
2016
Remote sensing data has been widely used in the estimation of crop yields by employing statistical methods such as regression model. Machine learning, which is an efficient empirical method for classification and prediction, is another approach to crop yield estimation. This paper described the corn yield estimation in Iowa State using four machine learning approaches such as SVM (Support Vector Machine), RF (Random Forest), ERT (Extremely Randomized Trees) and DL (Deep Learning). Also, comparisons of the validation statistics among them were presented. To examine the seasonal sensitivities of the corn yields, three period groups were set up: (1) MJJAS (May to September), (2) JA (July and August) and (3) OC (optimal combination of month). In overall, the DL method showed the highest accuracies in terms of the correlation coefficient for the three period groups. The accuracies were relatively favorable in the OC group, which indicates the optimal combination of month can be significant in statistical modeling of crop yields. The differences between our predictions and USDA (United States Department of Agriculture) statistics were about 6-8 %, which shows the machine learning approaches can be a viable option for crop yield modeling. In particular, the DL showed more stable results by overcoming the overfitting problem of generic machine learning methods.
Journal of the Korean Society of Hazard Mitigation
/
v.9
no.6
/
pp.111-117
/
2009
The RUSLE(Revised Universal Soil Loss Equation) has been most widely used to estimate sediment yield in Korea. However RUSLE factors have not been verified based on measured data of sediment yield. The analysis of characteristics for the rainfall erosivity factor R was performed in this study. The R factor of RUSLE is expressed as multiple of total rainfall energy and maximum 30 min rainfall intensity. In this study, the characteristics of 10 rainfall energy equations were investigated using data measured in Gangneung experimental watershed, and applicability of each equations was reviewed based on results of the correlation analysis between measured sediment yield and total rainfall, between measured sediment yield and maximum intensity, and between measured sediment yield and total rainfall energy yield. Also, the relationship of I30 and I60 was proposed using 10-min rainfall data during 9 years.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.