• Title/Summary/Keyword: Data transfer time

Search Result 1,290, Processing Time 0.03 seconds

Performance analysis of transfer alignment for velocity & angle matching and angular rate & acceleration matching (속도 및 각정합과 각속도 및 가속도정합에 대한 전달정렬의 특성 분석)

  • 양철관;심덕선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1860-1863
    • /
    • 1997
  • Transfer alignement is the process of initializing attitude of slave INS using the data of master INS. This paper presents the performance analysis of transfer alignment at sea using convariance analysis method. Velocity & angle matching and angular rate & acceleration matching are used for analysis, and the performance of two matching methods are compared. We propose a new method for angular rate & acceleration matching. Under the assumption of accurate modeling of ship flexure, the performance of transfer alignment time and accuray is improved very much for the new method.

  • PDF

Efficient Packet Transmission Method for Fast Data Dissemination in Senor Node (센서노드에서의 빠른 데이터 전달을 위한 효율적 패킷 전송 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.235-243
    • /
    • 2007
  • Sensor network is used to obtain sensing data in various area. The interval to sense the events depends on the type of target application and the amounts of data generated by sensor nodes are not constant. Many applications exploit long sensing interval to enhance the life time of network but there are specific applications that requires very short interval to obtain fine-grained, high-precision sensing data. If the number of nodes in the network is increased and the interval to sense data is shortened, the amounts of generated data are greatly increased and this leads to increased amount of packets to transfer to the network. To transfer large amount of packets fast, it is necessary that the delay between successive packet transmissions should be minimized as possible. In Sensor network, since the Operating Systems are worked on the event driven, the Timer Event is used to transfer packets successively. However, since the transferring time of packet completely is varies very much, it is very hard to set appropriate interval. The longer the interval, the higher the delay and the shorter the delay, the larger the fail of transfer request. In this paper, we propose ESTEO which reduces the delay between successive packet transmissions by using SendDone Event which informs that a packet transmission has been completed.In ESTEO, the delay between successive packet transmissions is shortened very much since the transmission of next packet starts at the time when the transmission of previous packet has completed, irrespective of the transmission timee. Therefore ESTEO could provide high packet transmission rate given large amount of packets.

  • PDF

Energy Efficient Wireless Data Transmission for Personal Health Devices

  • Kim, Sang-Kon;Kim, Tae-Kon;Koh, Jin-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1559-1570
    • /
    • 2013
  • The family of ISO/IEEE11073 standards is the basis of the e-health system and provides interoperability for personal health devices. In the early stage of e-health business, it was expected that people would use a health device individually. In this case, a measurement datum was episodically acquired and generally transmitted for one person at a time. Recently, a health device is expected to be used by multiple people, and large amounts of measurement data are gathered in a short time interval. In addition, mobile health devices have become more popular, so that energy efficient measurement data transmission is required, to prolong the use of a device. In IEEE11073 PHD standards, data transmission is classified into three different types: immediate individual transfer, small block transfer, and large block transfer. The large block transfer using PM-store concept provides efficient transmission. However, an existing PM-store has problem when a device is used by multiple people. To address the defined problem, a modified PM-segment that is in compliance with 11073 standards is proposed in this paper. In particular, the proposed PM-segment is designed to minimize the additional complexity of an agent instead of a manager and it is interoperable with the existing manager. The proposed PM-segment shows better performance than the existing PM-segment, in terms of memory requirements and expected queue time. Also, performance comparison among the three transfers is performed in regard to the delay time and communication power consumption points of view.

A multi-radio sink node designed for wireless SHM applications

  • Yuan, Shenfang;Wang, Zilong;Qiu, Lei;Wang, Yang;Liu, Menglong
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.261-282
    • /
    • 2013
  • Structural health monitoring (SHM) is an application area of Wireless Sensor Networks (WSNs) which usually needs high data communication rate to transfer a large amount of monitoring data. Traditional sink node can only process data from one communication channel at the same time because of the single radio chip structure. The sink node constitutes a bottleneck for constructing a high data rate SHM application giving rise to a long data transfer time. Multi-channel communication has been proved to be an efficient method to improve the data throughput by enabling parallel transmissions among different frequency channels. This paper proposes an 8-radio integrated sink node design method based on Field Programmable Gate Array (FPGA) and the time synchronization mechanism for the multi-channel network based on the proposed sink node. Three experiments have been performed to evaluate the data transfer ability of the developed multi-radio sink node and the performance of the time synchronization mechanism. A high data throughput of 1020Kbps of the developed sink node has been proved by experiments using IEEE.805.15.4.

Grid-based geospatial analysis of areas vulnerable to prehospital transportation of emergency patients in Jeju (제주 지역 중증 응급 질환의 병원 전 이송 취약 지역에 대한 격자 기반 지리 공간 분석)

  • Hansol Hong;Woo Jeong Kim;Myung Sang Ko;Sung Wook Song;Yoon Ji Kim;Kyeong Won Kang
    • Journal of Medicine and Life Science
    • /
    • v.19 no.3
    • /
    • pp.109-115
    • /
    • 2022
  • During emergencies, the time from symptom onset to definitive treatment determines the final outcome. Therefore, the emergency medical service (EMS) system in Korea, aims to transfer patients requiring emergency care to appropriate medical facilities within 30 minutes. This is in an attempt to improve the chances of survival and reduce sequelae. We attempted to locate areas vulnerable to prehospital transportation and identify hot spots with high demand for emergency medical helicopters in Jeju, by using a grid-based geospatial analysis. This retrospective cross-sectional observational study employed EMS data of 119 ambulance run sheets spanning from January 1, 2010 to September 30, 2018 in Jeju. The location data of emergency patients was superimposed on the spatial analysis frame using the geographic information system (GIS). Subsequently, the locations of long-distance transfer and delayed transfers to the hospital were analyzed, to identify hot spots where the demand for helicopter emergency services would be high. Of the total analysis targets, 42.2% (20,288 people) took more than 30 minutes from reporting to 119 dispatchers to hospital transfer. As the transfer time interval increased, the patient occurrence time increased in the city of Jeju, increased in Seogwipo, and the ratio of patients/guardians to select a transfer hospital rose with significant differences. This study identified the characteristics related to time delays in prehospital transfer of emergency patients in Jeju, and the areas vulnerable to prehospital emergency care were derived and visualized through spatial analysis using the GIS.

Fault Diagnosis and Analysis Based on Transfer Learning and Vibration Signals (전이 학습과 진동 신호를 이용한 설비 고장 진단 및 분석)

  • Yun, Jong Pil;Kim, Min Su;Koo, Gyogwon;Shin, Crino
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.287-294
    • /
    • 2019
  • With the automation of production lines in the manufacturing industry, the importance of real-time fault diagnosis of facility is increasing. In this paper, we propose a fault diagnosis algorithm of LM (Linear Motion)-guide based on deep learning using vibration signals. Generally, in order to guarantee the performance of the deep learning, it is necessary to have a sufficient amount of data, but in a manufacturing industry, it is often difficult to obtain enough data due to physical and time constraints. To solve this problem, we propose a convolutional neural networks (CNN) model based on transfer learning. In addition, the spectrogram image is input to the CNN to reflect the frequency characteristic of the vibration signals with time. The performance of fault diagnosis according to various load condition and transfer learning method was compared and evaluated by experiments. The results showed that the proposed algorithm exhibited an excellent performance.

A Simulation Technique of the Shipboard INS Transfer Alignment Environments using Hardware-In-the-Loop Simulation (HILS를 이용한 함정의 관성항법장치 전달정렬 환경 모의 기법)

  • Kim, Woon-Sik;Yang, Tae-Soo;Kim, Sang-Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.181-188
    • /
    • 2011
  • A simulation technique, which simulate dynamic motion and communication environments of ship in the lab, is needed in order to reduce the testing cost when we evaluate the transfer alignment performance of shipboard INS. Hardware-In-the-Loop Simulation(HILS) can be used as an effective test method for those system because it can provide flexible and realistic simulation environments, various test scenario, and repeated test environment in the lab without additional cost and person. This paper presents the methods for implementing the real time HILS environment for testing transfer alignment performance of shipboard INS. It includes real time executive for controlling realtime simulation and calculating the ship motion, communication method for interfacing between the systems, and coordinate transformation method for converting real ship coordinate attitude data to lab coordinate attitude data.

Design Parameters Estimations for Bubble Column Reactors to Remove Toxic Gases (독성가스 제거용 기포탑 반응기의 설계기법)

  • Oh, Junghwan;Hong, Min Sun
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.95-104
    • /
    • 2018
  • Gas-liquid bubble column reactors are extensively used in industrial processes. A detailed knowledge of bubble size distribution is needed for determining the mass transfer in gas-liquid film. Experimental data on bubble size distribution and liquid-side mass transfer coefficient($k_L$) were used to calculate the estimated time to saturation in bubble column reactor. Also, the gas flux was evaluated to the liquid-side mass transfer coefficient($k_L$) and solubility data for hydrogen sulfide($H_2S$) and chlorine($Cl_2$) absorption into water. Simulation results show that $H_2S$ absorption time to 50 % of saturation concentrations are 611 sec and 1,329 sec when bubble diameters are 0.5 mm and 4.5 mm, while absorbing 1 % $H_2S$ gas. In case of $Cl_2$, absorption time range 657 to 1,400 sec when bubble size range 0.5 mm to 4.5 mm, while absorbing 1 % $Cl_2$ gas. Calculated simulation results can be used in the design of emergency relief bubble reactors.

Comparison of Time Offsets by Tropospheric Zenith Path delay models and Mapping Functions in GPS Time Transfer (GPS 시각 전송에서의 대류층 천정지연 모델과 매핑 함수에 따른 시각오프셋 비교)

  • Yu, Dong-Hui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1317-1322
    • /
    • 2014
  • This paper shows effects of tropospheric delay models and mapping functions among delay features occurred when GPS code signal is transferred for GPS Time Transfer. GPS time transfer uses CGGTTS as the international standard format. For geodetic GPS receiver, ROB has provided r2cggtts software which generates CGGTTS data from RINEX data and all laboratories participated in TAI link use this software and send the CGGTTS results periodically. Though Saastamoinen zenith path model and Niell mapping function are commonly used in space geodesy, r2cggtts software applied NATO zenith path model and CHAO mapping function to the tropospheric delay model. Hence, this paper shows effects of two tropospheric delay models by implementing Saastamoinen model and Niell mapping function for the time offset.

Evaluation of Transit Transfer Pattern for the Mobility Handicapped Using Traffic Card Big Data: Focus on Transfer between Bus and Metro (교통카드데이터를 활용한 교통약자 대중교통 환승통행패턴 분석: 버스 지하철 간 환승을 중심으로)

  • Kwon, Min young;Kim, Young chan;Ku, Ji sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.58-71
    • /
    • 2021
  • The number of elderly people worldwide is rapidly increasing and the mobility handicapped suffering from inconvenient public transportation service is also increasing. In Korea and abroad, various policies are being implemented to provide high-quality transportation services for the mobility handicapped, and budget support and investment related to mobility facilities are being expanded. The mobility handicapped spends more time for transit transfer than normal users and their satisfaction with transit service is also lower. There exist transfer inconvenience points of the mobility handicapped due to various factors such as long transfer distances, absence of transportation facilities like elevators, escalators, etc. The purpose of this study is to find transfer inconvenience points for convenient transit transfer of the mobility handicapped using Smart card Big data. This study process traffic card transaction data and construct transfer travel data by user groups using smart card big data and analysis of the transfer characteristics for each user group ; normal, children, elderly, etc. Finally, find transfer inconveniences points by comparing transfer patterns between normal users and the mobility handicapped. This study is significant in that it can find transfer inconvenience points for convenient transit transfer of the mobility handicapped using Smart card Big data. In addition, it can be applicated of Smart card Big data for developing public transportation polices in the future. It is expected that the result of this study be used to improve the accessibility of transit transportation for mobility handicapped.