• 제목/요약/키워드: Data surveillance

검색결과 943건 처리시간 0.029초

보안 감시를 위한 심층학습 기반 다채널 영상 분석 (Multi-channel Video Analysis Based on Deep Learning for Video Surveillance)

  • 박장식;마르셀 위라네가라;손금영
    • 한국전자통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.1263-1268
    • /
    • 2018
  • 본 논문에서는 영상 보안 감시를 위한 심층학습 객체 검출과 다중 객체 추적을 위한 확률적 데이터연관 필터를 연계한 영상분석 기법을 제안하고, GPU를 이용하여 구현하는 방안을 제시한다. 제안하는 영상분석 기법은 객체 검출과 추적으로 순차적으로 수행한다. 객체 검출을 위한 심층학습은 ResNet을 이용하고, 다중 객체 추적을 위하여 확률적 데이터 연관 필터를 적용한다. 제안하는 영상분석 기법은 임의의 영역으로 불법으로 침입하는 사람을 검출하거나 특정 공간에 출입하는 사람을 계수하는데 응용할 수 있다. 시뮬레이션을 통하여 약 25fps의 속도로 48채널의 영상을 분석할 수 있음을 보이고, RTSP 프로토콜을 통하여 실시간 영상분석이 가능함을 보인다.

인플루엔자 등 급성 호흡기계 질환과 의약품 사용의 계절적 상관성 분석 (Assessing Seasonality of Acute Febrile Respiratory Tract Infections and Medication Use)

  • 박주희;최원석;이혜영;김경훈;김동숙
    • 보건행정학회지
    • /
    • 제28권4호
    • /
    • pp.402-410
    • /
    • 2018
  • Background: Monitoring appropriate medication categories can provide early warning of certain disease outbreaks. This study aimed to present a methodology for selecting and monitoring medications relevant to the surveillance of acute respiratory tract infections, such as influenza. Methods: To estimate correlations between acute febrile respiratory tract infection and some medication categories, the cross-correlation coefficient (CCC) was used and established. Two databases were used: real-time prescription trend of antivirals, anti-inflammatory drugs, antibiotics using Drug Utilization Review Program between 2012 and 2015 and physicians' number of encounters with acute febrile respiratory tract infections such as influenza outbreaks using the national level health insurance claims data. The seasonality was also evaluated using the CCC. Results: After selecting six candidate diseases that require extensive monitoring, influenza with highly specific medical treatment according to the health insurance claims data and its medications were chosen as final candidates based on a data-driven approach. Antiviral medications and influenza were significantly correlated. Conclusion: An annual correlation was observed between influenza and antiviral medications, anti-inflammatory drugs. Suitable models should be established for syndromic surveillance of influenza.

TSSN: 감시 영상의 강우량 인식을 위한 심층 신경망 구조 (TSSN: A Deep Learning Architecture for Rainfall Depth Recognition from Surveillance Videos)

  • 리준;현종환;최호진
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.87-97
    • /
    • 2018
  • 강우량은 매우 중요한 기상 정보이다. 일반적으로, 도로 수준과 같은 높은 공간 해상도의 강우량이 더 높은 가치를 가진다. 하지만, 도로 수준의 강우량을 측정하기 위해 충분한 수의 기상 관측 장비를 설치하는 것은 비용 관점에서 비효율적이다. 본 논문에서는 도로의 감시 카메라 영상으로부터 강우량을 인식하기 위해 심층 신경망을 활용하는 방법에 대해 제시한다. 해당 목표를 달성하기 위해, 본 논문에서는 교내 두 지역의 감시 카메라 영상과 강우량 데이터를 수집했으며, 새로운 심층 신경망 구조인 Temporal and Spatial Segment Networks(TSSN)를 제안한다. 본 논문에서 제시한 심층 신경망으로 강우량 인식을 수행한 결과, 프레임 RGB와 두 연속 프레임 RGB 차이를 입력으로 사용했을 때, 높은 성능으로 강우량 인식을 수행할 수 있었다. 또한, 기존의 심층 신경망 모델과 비교했을 때, 본 논문에서 제안하는 TSSN이 가장 높은 성능을 기록함을 확인할 수 있었다.

Developing a Job Exposure Matrix of Work Organization Hazards in the United States: A Review on Methodological Issues and Research Protocol

  • Choi, BongKyoo
    • Safety and Health at Work
    • /
    • 제11권4호
    • /
    • pp.397-404
    • /
    • 2020
  • Background: Most job exposure matrices (JEMs) have been developed for chemical and physical hazards in the United States (US). In addition, the overall validity of most JEMs of work organization hazards using self-reported data in the literature remains to be further tested due to several methodological weaknesses. Methods: This paper aims to review important methodological issues with regard to a JEM of work organization hazards using self-report data and to present a research protocol for developing a four-axis (job titles, hazards, sex, and time) JEM of major work organization hazards using the US General Social Survey-Quality of Work-Life (GSS-QWL) data (2002-2018; N = 7,100 workers). Results: Five methodological weaknesses in existing JEMs of work organization hazards using self-report data were identified: having only two axes (hazard and occupation), using psychometrically weak items and scales, including scales having little interoccupational variability, unresolved optimal minimum numbers of subjects per occupation, and low accessibility. The methodological weaknesses were successfully addressed in the proposed research protocol. Conclusion: The work organization JEM to be developed will significantly facilitate and strengthen occupational epidemiological studies on work organization hazards and major health outcomes, improve national and occupational surveillance of work organization hazards, and promote interventions for a healthy work environment in the US.

u-CCTV 화재 감시 시스템 개발을 위한 시스템 및 화재 판별 기술 연구 (A Study on u-CCTV Fire Prevention System Development of System and Fire Judgement)

  • 김영혁;임일권;이계귀;박소아;김명진;이재광
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.463-466
    • /
    • 2010
  • 본 논문에서는 CCTV를 기반으로 한 화재 감시 시스템 개발을 위하여 기존 센서를 기반으로 하는 화재 탐지 시스템과 영상을 기반으로 하는 시스템들의 장단점을 분석하고 국가적으로 지원하고 있는 U-City, U-Home, U-Campus 등 확산되는 유비쿼터스 환경에 적합한 화재 감시 시스템 모델과 화재를 판별하기위한 기술을 제안한다. 본 연구를 위해 영상을 촬영할 카메라로는 Microsoft LifeCam VX-1000을 사용하였으며, 영상을 촬영하는 코덱으로는 H.264를 사용하였다. 카메라로부터 촬영된 영상 데이터를 가공하여 서버에 전달하는 클라이언트는 Linux OS를 사용하는 ARM9 S3C2440 보드로 제작하였다. 클라이언트와 서버의 영상 데이터 송/수신은 기본적으로 1:1 방식으로 되어있다. 그리하여 카메라의 데이터를 다중으로 수신하기 위한 멀티캐스트 1:N이 가능하게 명세하여, 화재 감시를 위한 다각적 영상 수신 시스템을 설계하였다. 영상 데이터는 RGB 형식을 YUV로 변환하여 전송하며, 화재를 감지하기위한 모션 추출을 위해 Y값을 이용한다. 화재 판별은 붉은 색상을 감지하고 Y값의 움직임을 계산해 화재시 지속적으로 타오르는 불꽃의 모션을 감지하여 판단하는 판별법을 적용한 시스템을 최종적으로 제안한다.

  • PDF

지하철 역사내 무선 센서네트워크 환경구축을 위한 무선 스펙트럼 분석 및 전송시험에 관한 연구 (Performance Evaluation of Wireless Sensor Networks in the Subway Station of Workroom)

  • 안태기;김갑영;양세현;최갑봉;심보석
    • 한국산학기술학회논문지
    • /
    • 제12권7호
    • /
    • pp.3220-3226
    • /
    • 2011
  • 지하철 역사에 화재, 테러 등의 내 외부 위험요인을 감시하기 위하여 CCTV와 각종 센서를 이용한 감시시스템이 구축되어 왔으며, 최근 최신의 IT기술인 센서네트워크기술을 이용한 감시시스템기술 도입이 여러 분야에서 시도되고 있다. 2007년부터 정부 주도하에 지하철 역사의 경우에도 최신의 IT기술인 무선 센서네트워크기술 및 지능 형영상감시기술 등과 접목하여 화재, 제한지역 침입, 승객 혼잡도, 우범지역, 역사 건전성 등을 종합적으로 감시하는 도시철도지능형종합감시시스템 개발 및 구축이 추진 중에 있다. 이를 위하여 본 연구에서는 개발 중인 도시철도 지능형 종합감시시스템의 현장 역사 적용에 앞서 무선센서네트워크의 대표라 할 수 있는 ZigBee기반의 현장 무선통신환경 시험을 서울지하철 충무로 역사에서 수행하였고, 본 논문에 충무로역사 내부 승강장 및 대합실에서의 ZigBee기반의 무선통신환경 시험결과를 정리, 분석하였다. 승강장 및 대합실의 무선 스펙트럼분석 결과 ZigBee기반의 센서네트워크의 주파수와 중첩되는 주파수는 없었으며 인접 주파수 또한 10MHz 이상 이격되어 주파수 간섭을 받지 않는 것으로 나타났다. ZigBee를 이용한 무선데이터 전송 시험 결과, 데이터 전송은 열차의 승강장 진출입시의 영향보다 승강장 혹은 대합실의 이용승객 수 및 유동량에 의한 멀티패스 페이딩(multi-path fading) 효과에 더 큰 영향을 받는 것으로 나타나, 역사에 지능형종합감시시스템 구축 시 이를 고려하여야 할 것으로 판단된다.

V2V기반 교통정보수집체계 설계 및 요구사항분석 (Designing A V2V based Traffic Surveillance System and Its Functional Requirements)

  • 홍승표;오철;김원규;김현미;김태형
    • 대한교통학회지
    • /
    • 제26권4호
    • /
    • pp.251-264
    • /
    • 2008
  • 정확하고 신뢰성 있는 실시간 교통자료의 수집은 다양한 교통운영관리 전략의 구현 및 교통정보제공을 위한 필수요소이다. 본 연구에서는 보다 seamless한 고급 교통정보가공을 위해 차량 간 무선통신기술(Vehicle-To-Vehicle Communication; V2V)을 활용한 새로운 교통정보수집체계를 제안하였다. GPS를 이용하여 개별차량의 주행궤적을 추출하고 V2V를 이용한 교통정보수집 방안을 제시하였다. 본 연구에서 제안한 교통정보수집체계의 기술적 요구사항분석을 위해 몬테카를로 시뮬레이션 기반의 평가체계를 개발하였다. 미시적 교통시뮬레이터 AIMSUN으로부터 개별차량의 주행궤적을 추출하고, 이를 이용한 구간통행시간 산출기법을 몬테카를로 시뮬레이션 기반 평가체계에 결합하여 기술적 요구사항을 도출하였다. 구간통행시간 정확도에 영향을 미치는 요인으로서 V2V 및 개별차량 주행궤적 추출이 가능한 equipped vehicle의 market penetration rate, V2V 통신반경, 통행시간 산출주기를 분석하였다. 또한, 제안된 시스템의 기술적 타당성 확인을 위해 prototypical implementation을 수행하였다. 본 연구의 결과물은 보다 seamless하고 정확한 교통정보가공을 위한 차세대 수집시스템 개발 및 구현을 위한 유용한 기초자료로 활용될 것으로 기대된다.

다중 플랫폼(위성, 무인기, AIS, HF 레이더)에 기반한 시나리오별 선박탐지 모니터링 (Operational Ship Monitoring Based on Multi-platforms (Satellite, UAV, HF Radar, AIS))

  • 김상완;김동한;이윤경;이임평;이상호;김정훈;김근용;유주형
    • 대한원격탐사학회지
    • /
    • 제36권2_2호
    • /
    • pp.379-399
    • /
    • 2020
  • 불법 선박 탐지는 해양 감시 체계 구축에서 중요한 요소 중 하나이다. 효과적인 해양 감시를 위해서는 광역적이고 지속적인 해상 감시 수단이 요구된다. 본 연구에서는 인공위성 SAR, HF 레이더, 무인기 그리고 AIS 통합 기반의 선박탐지 모니터링을 가능성을 검토하였다. 각 플랫폼별 시·공간 관측 특성을 고려하여 선박감시 시나리오는 HF 레이더 자료와 AIS 자료를 이용한 상시감시 시스템과 인공위성과 무인기를 활용한 이벤트 감시 시스템으로 구성되었다. 상시감시 시스템은 아직까지 HF 레이더 자료의 낮은 공간해상도로 인한 탐지 가능 선박크기 제한 및 정확도의 한계가 있다. 그러나, 인공위성 SAR 자료를 사용한 이벤트 감시 시스템은 추출된 선박 위치와 AIS 자료를 이용한 불법 선박 탐지, 그리고 SAR 영상에서 추출된 선박속도, 이동방향에 대한 정보 또는 HF 레이더 자료를 이용한 선박 트래킹 정보는 무인기 감시체계로의 전환에 주요한 정보로 활용될 수 있다. 시나리오 구성을 위한 실험을 위해 2019년 6월 25일부터 6월 26일까지 2일간 충청남도 서천군 홍원항 서측에 위치한 연도를 중심으로 통합 현장 실험을 수행하였다. 이로부터 KOMPSAT-5 SAR 영상, 무인기 영상, HF 레이더 자료 및 AIS 자료가 성공적으로 수집되었고 각각 개발된 알고리즘을 적용하여 분석되었다. 개발된 선박감시 모니터링 시스템은 다중 플랫폼으로부터 수집된 자료 및 분석 결과의 가시화 뿐만 아니라 추후 상시 및 이벤트 선박감시 시나리오를 구현에 기반이 될 것이다.

ADS-B가 적용된 조종석 디스플레이 기능 구현 (The design and implementation of a cockpit display with ADS-B)

  • 홍교영;김영인;안동만
    • 한국항공운항학회지
    • /
    • 제18권2호
    • /
    • pp.9-15
    • /
    • 2010
  • ADS-B(Automatic Dependent Surveillance-Broadcast) has been recognized as a key component of Surveillance and ATM in CNS/ATM System. In addition to providing surveillance for air traffic control(ATC), ADS-B also supports airborne applications such as enhanced traffic situational awareness through the display of other aircraft to pilots and flight crew. It provides the real-time and same air traffic information to pilots in the aircraft cockpit, air traffic controllers in tower and surface vehicles on the ground at the same time. Aircraft Cockpit Display Unit will display the given information precisely and accurately. This paper describes progress in the development of a Cockpit Display with ADS-B data that enable pilots to acquire, verify and maintain pre-defined spacing intervals from other aircraft for general aviation and small regional aircraft. The designed display provides analogous information in the form of traffic position, range, and ground speed, etc.

Crowd Activity Recognition using Optical Flow Orientation Distribution

  • Kim, Jinpyung;Jang, Gyujin;Kim, Gyujin;Kim, Moon-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.2948-2963
    • /
    • 2015
  • In the field of computer vision, visual surveillance systems have recently become an important research topic. Growth in this area is being driven by both the increase in the availability of inexpensive computing devices and image sensors as well as the general inefficiency of manual surveillance and monitoring. In particular, the ultimate goal for many visual surveillance systems is to provide automatic activity recognition for events at a given site. A higher level of understanding of these activities requires certain lower-level computer vision tasks to be performed. So in this paper, we propose an intelligent activity recognition model that uses a structure learning method and a classification method. The structure learning method is provided as a K2-learning algorithm that generates Bayesian networks of causal relationships between sensors for a given activity. The statistical characteristics of the sensor values and the topological characteristics of the generated graphs are learned for each activity, and then a neural network is designed to classify the current activity according to the features extracted from the multiple sensor values that have been collected. Finally, the proposed method is implemented and tested by using PETS2013 benchmark data.