• Title/Summary/Keyword: Data simulator

Search Result 1,402, Processing Time 0.024 seconds

Customized Aerodynamic Simulation Framework for Indoor HVAC Using Open-Source Libraries (공개 라이브러리 기반 실내 공조 맞춤형 전산모사 시스템 개발)

  • Sohn, Ilyoup;Roh, Hyunseok;Kim, Jaesung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.135-143
    • /
    • 2017
  • A customized CFD simulator to perform thermo-fluid dynamic simulations of an HVAC for an indoor space is presented. This simulation system has been developed for engineers studying architectural engineering, as the HVAC mechanical systems used in housings and buildings. Hence, all functions and options are so designed to be suitable that they are suitable for non-CFD experts as well as CFD engineers. A Computational mesh is generated by open-source libraries, FEMM (Finite Element Method Magnetics), and OpenFOAM. Once the boundary conditions are set, the fluid dynamic calculations are performed using the OpenFOAM solver. Numerical results are validated by comparing them with the experimental data for a simple indoor air flow case. In this paper, an entirely new calculation process is introduced, and the flow simulation results for a sample office room are also discussed.

9-DOF Modeling and Turning Flight Simulation Evaluation for Parachute (9-DOF 낙하산 모델링 및 선회비행 시뮬레이션 검증)

  • Lee, Sang-Jong;Min, Byoung-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.688-693
    • /
    • 2016
  • This paper describes the parachute dynamics modeling and simulation results for the development of training simulator of a HALO (High Altitude Low Opening) parachute, which is currently in use for military purposes. The target parachute is a rectangular shaped parafoil and its dynamic model is derived based on the real geometry data as the 9-DOF nonlinear equations of dynamics. The simulation was conducted through the moment of inertia and its aerodynamic derivatives to reflect the real characteristics based on the MATLAB/Simulink. In particular, its modeling includes the typical characteristics of the added mass and moment of inertia, which is shown in the strong effects in Lighter-Than-Air(LTA) flight vehicle. The proposed dynamic modeling was evaluated through the simulation under the spiral turning flight conditions of the asymmetric control inputs and compared with the performance index in the target parachute manual.

Detection and Identification of CMG Faults based on the Gyro Sensor Data (자이로 센서 정보 기반 CMG 고장 진단 및 식별)

  • Lee, Jung-Hyung;Lee, Hun-Jo;Lee, Jun-Yong;Oh, Hwa-Suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2019
  • Control moment gyro (CMG) employed as satellite actuators, generates a large torque through the steering of its gimbals. Although each gimbal holds a high-speed rotating wheel, the wheel imbalances induces disturbance and degrades the satellite control quality. Therefore, the disturbances ought to be detected and identified as a precaution against actuator faults. Among the method used in detecting disturbances is the state observers. In this paper, we apply a continuous second order sliding mode observer to detect single disturbances/faults in CMGs. Verification of the algorithm is also done on the hardware satellite simulator where four CMGs are installed.

Quantitative Evaluation of the Collision-Avoidance Capability of Maritime Autonomous Surface Ships Using FMSS (FMSS를 이용한 자율운항선박 충돌회피능력 정량화 평가 기법에 관한 연구)

  • Bae, Seok-Han;Jung, Min;Jang, Eun-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.460-468
    • /
    • 2020
  • Research related to the technology developed for the Maritime Autonomous Surface Ship (MASS) is currently underway. Although one of those core technologies is collision-avoidance technology for ship operators at sea, no research has been done to objectively quantify its effectiveness. Therefore, this study was conducted to develop an evaluation model to examine the collision-avoidance ability of MASS. Ship-control experts performed a ship-handling simulation for each ship encounter type using the Full Mission Ship-handling Simulator (FMSS). We used the resulting data and technical statistics, to develop an evaluation model that utilized FMSS to quantify the operational capability of the collision-avoidance technology. This evaluation model also can be used at sea to assess deck officers' ability to use the technology and to improve and develop other MASS technologies.

IoT Platform System for Electric Fire Prediction and Prevention (전기화재 예측 및 예방을 위한 IoT 플랫폼 시스템)

  • Yang, Seungeui;Lee, Sungock;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.223-229
    • /
    • 2022
  • During the winter season, when the weather gets colder every year, electricity consumption increases rapidly. The occurrence of fires is increasing due to a short circuit in electrical facilities of buildings such as markets, bathrooms, and apartments with high population density while using a lot of electricity. The cause of these short circuit fires is mostly due to the aging of the wires, the usage increases, and the excessive load cannot be endured, and the wire sheath is melted and caused by nearby ignition materials. In this paper, the load and overheat generated in the electric wire are measured through a complex sensor composed of an overload sensor, a VoC sensor, and an overheat sensor. Based on this, big data analysis is carried out to develop a platform capable of predicting, alerting, and blocking electric fires in real time, and a simulator capable of simulated fire experiments.

A Study on the Development of Helicopter Accident Prevention Program by Spatial Disorientation (비행착각에 의한 헬리콥터 사고 예방 프로그램 개발에 관한 연구)

  • Young-jin Cho
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.8-15
    • /
    • 2023
  • According to the results of a survey of pilots, 92% or 230 out of 252 respondents said they had experienced flight errors during flight. As so many pilots are experiencing Spatial Disorientation, and this is one of the main causes of aircraft accidents and loss of life, so it is important to understand accurately. However, in Korea, training equipment for fixed-wing pilots has already been developed and trained, or recently developed, and some equipment for helicopter pilots is available in the Korea Air Force, but there is no environment for helicopter pilots to receive training in Spatial Disorientation prevention. Therefore, we intend to produce a helicopter-only simulator, present a program to prevent possible Spatial Disorientation during flights for helicopter pilots, and propose legal and institutional measures based on future training data.

Prediction of Fire Curves Considering the Relationship between Mass Increase and Combustion Time of Combustibles (연소물의 질량증가와 연소시간의 상관관계를 고려한 화재곡선 예측)

  • Eun-Joon Nam;Tae-Il Lee;Goang-Seup Zi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In this paper, we aimed to convert the fire curve in volume units to a fire curve per unit area for application in the Fire Dynamic Simulator (FDS) surface heat release rate method. The fire curve was expressed dimensionlessly considering the total combustion characteristic time, and improvements were made to represent the appropriate ratios for the growth , steady, and decay phases concerning the fire intensity. Additionally, a correction function for combustion characteristic time varying with mass increase was derived. Also to control the growth time values according to the increase in mass, a function to correct the growth phase ratio was derived. Consequently, utilizing existing data, a formula was established to determine the reference mass for combustion materials and predict the fire curve based on mass increase.

Reconfigurable Simulator for Safety Evaluation of eVTOL Aircraft (eVTOL 항공기 안전성 평가를 위한 가변형 시뮬레이터 구축)

  • Hyeji Kim;Jeongmin Kim;Dayeon Yoon;Jongjun Ha;Dongjin Lee;Jangho Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.95-101
    • /
    • 2024
  • This paper aims to establish a reconfigurable flight simulation environment to conduct safety evaluation of various electric vertical take-off and landing (eVTOL) aircraft. Since the inceptor, aircraft dynamics model, and controller applied to each eVTOL aircraft are different, it was configured to be variable so that a simulation can be executed for each eVTOL aircraft. Test elements and performance indicators were set to perform safety evaluation of eVTOL aircraft. Ground auxiliary equipments were designed and implemented in a simulation environment according to test procedures for each test element. In addition, to analyze safety performance, a simulation flight data collection environment based on MATLAB/Simulink and a tool for safety performance analysis were implemented. Test flight and analysis were conducted in the implemented simulation environment in this paper. Finally, this study shows the environment was verified by confirming that it was performed normally.

Dynamic Rank Subsetting with Data Compression

  • Hong, Seokin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.1-9
    • /
    • 2020
  • In this paper, we propose Dynamic Rank Subsetting (DRAS) technique that enhances the energy-efficiency and the performance of memory system through the data compression. The goal of this technique is to enable a partial chip access by storing data in a compressed format within a subset of DRAM chips. To this end, a memory rank is dynamically configured to two independent sub-ranks. When writing a data block, it is compressed with a data compression algorithm and stored in one of the two sub-ranks. To service a memory request for the compressed data, only a sub-rank is accessed, whereas, for a memory request for the uncompressed data, two sub-ranks are accessed as done in the conventional memory systems. Since DRAS technique requires minimal hardware modification, it can be used in the conventional memory systems with low hardware overheads. Through experimental evaluation with a memory simulator, we show that the proposed technique improves the performance of the memory system by 12% on average and reduces the power consumption of memory system by 24% on average.

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.