• Title/Summary/Keyword: Data simulator

Search Result 1,402, Processing Time 0.023 seconds

Inter-relationships between performance shaping factors for human reliability analysis of nuclear power plants

  • Park, Jooyoung;Jung, Wondea;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.87-100
    • /
    • 2020
  • Performance shaping factors (PSFs) in a human reliability analysis (HRA) are one that may influence human performance in a task. Most currently applicable HRA methods for nuclear power plants (NPPs) use PSFs to highlight human error contributors and to adjust basic human error probabilities (HEPs) that assume nominal conditions of NPPs. Thus far, the effects of PSFs have been treated independently. However, many studies in the fields of psychology and human factors revealed that there may be relationships between PSFs. Therefore, the inter-relationships between PSFs need to be studied to better reflect their effects on operator errors. This study investigates these inter-relationships using two data sources and also suggests a context-based approach to treat the inter-relationships between PSFs. Correlation and factor analyses are performed to investigate the relationship between PSFs. The data sources are event reports of unexpected reactor trips in Korea and an experiment conducted in a simulator featuring a digital control room. Thereafter, context-based approaches based on the result of factor analysis are suggested and the feasibility of the grouped PSFs being treated as a new factor to estimate HEPs is examined using the experimental data.

Pilot Gaze Tracking and ILS Landing Result Analysis using VR HMD based Flight Simulators (VR HMD 시뮬레이터를 활용한 조종사 시선 추적 및 착륙 절차 결과 분석)

  • Jeong, Gu Moon;Lee, Youngjae;Kwag, TaeHo;Lee, Jae-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.44-49
    • /
    • 2022
  • This study performed precision instrument landing procedures for pilots with a commercial pilot license using VR HMD flight simulators, and assuming that the center of the pilot's gaze is in the front, 3-D.O.F. head tracking data and 2-D eye tracking of VR HMD worn by pilots gaze tracking was performed through. After that, AOI (Area of Interesting) was set for the instrument panel and external field of view of the cockpit to analyze how the pilot's gaze was distributed before and after the decision altitude. At the same time, the landing results were analyzed using the Localizer and G/S data as the pilot's precision instrument landing flight data. As a result, the pilot was quantitatively evaluated by reflecting the gaze tracking and the resulting landing result using a VR HMD simulator.

Ship Motion-Based Prediction of Damage Locations Using Bidirectional Long Short-Term Memory

  • Son, Hye-young;Kim, Gi-yong;Kang, Hee-jin;Choi, Jin;Lee, Dong-kon;Shin, Sung-chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.295-302
    • /
    • 2022
  • The initial response to a marine accident can play a key role to minimize the accident. Therefore, various decision support systems have been developed using sensors, simulations, and active response equipment. In this study, we developed an algorithm to predict damage locations using ship motion data with bidirectional long short-term memory (BiLSTM), a type of recurrent neural network. To reflect the low frequency ship motion characteristics, 200 time-series data collected for 100 s were considered as input values. Heave, roll, and pitch were used as features for the prediction model. The F1-score of the BiLSTM model was 0.92; this was an improvement over the F1-score of 0.90 of a prior model. Furthermore, 53 of 75 locations of damage had an F1-score above 0.90. The model predicted the damage location with high accuracy, allowing for a quick initial response even if the ship did not have flood sensors. The model can be used as input data with high accuracy for a real-time progressive flooding simulator on board.

Review on Energy Efficient Clustering based Routing Protocol

  • Kanu Patel;Hardik Modi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.169-178
    • /
    • 2023
  • Wireless sensor network is wieldy use for IoT application. The sensor node consider as physical device in IoT architecture. This all sensor node are operated with battery so the power consumption is very high during the data communication and low during the sensing the environment. Without proper planning of data communication the network might be dead very early so primary objective of the cluster based routing protocol is to enhance the battery life and run the application for longer time. In this paper we have comprehensive of twenty research paper related with clustering based routing protocol. We have taken basic information, network simulation parameters and performance parameters for the comparison. In particular, we have taken clustering manner, node deployment, scalability, data aggregation, power consumption and implementation cost many more points for the comparison of all 20 protocol. Along with basic information we also consider the network simulation parameters like number of nodes, simulation time, simulator name, initial energy and communication range as well energy consumption, throughput, network lifetime, packet delivery ration, jitter and fault tolerance parameters about the performance parameters. Finally we have summarize the technical aspect and few common parameter must be fulfill or consider for the design energy efficient cluster based routing protocol.

High Resolution Spaceborne SAR Operation and Target Recognition Simulator Using STK (STK를 이용한 고해상도 위성 SAR 운용 및 표적물 추출 기법)

  • Lee, Bo-Yun;Lee, Seul-Ki;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.299-309
    • /
    • 2013
  • A comprehensive SAR(Synthetic Aperture Radar) simulation is considered to be a complicated task since a full knowledge of the signal propagation characteristics, antenna pattern, system internal errors and interference noises should be taken into account. In high resolution target application modes, the time varying nature of target RCS(Radar Cross Section) strongly affects the generated SAR images. In this paper, in-depth SAR simulations are performed and analyzed incorporating the STK tools and MATLAB software. STK provides realistic orbit parameters while its radar module helps to extract accurate radiometric parameters of ground targets. SAR raw data corresponding to a given target is generated and processed using MATLAB simulator. The performance is measured by PSLR(Peak Sidelobe Ratio) and ISLR(Integrated Sidelobe Ratio) for a point target, which can be used as reference parameters for accurate radiometric calibration. Finally, high resolution target simulations are performed by adopting time varying target RCS characteristics.

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part II: Under-ventilated Fire Condition) (원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part II: 환기부족화재 조건))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Park, Jong Seok;Do, Kyusik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.80-88
    • /
    • 2013
  • The validation of Fire Dynamics Simulator (FDS) was conducted for the under-ventilated fire in well-confined multi-compartments representative of nuclear power plant. Numerical results were compared with experimental data obtained by the OECD/NEA PRISME project. The effects of the numerical boundary conditions (B.C.) in ventilated system and the flame suppression model applied within FDS on the thermal and chemical environments inside the compartment were discussed in details. It was found that numerical B.C. on the vent flow resulting from over-pressure at ignition and under-pressure at extinction should be considered carefully in order to predict accurately the species concentrations rather than temperatures and heat fluxes inside the multi-compartment. The default information of suppression model applied within FDS resulted in artificial phenomena such as flame extinction and re-ignition, and thus the FDS results on the under-ventilated fire showed good agreement with the experimental results as the modified suppression criteria of the fuel used was adopted.

Active Noise Control of Blower Fan Noise at the Small-medium Size Factories (중소규모 공장에 설치된 송풍기의 소음 감소를 위한 능동소음제어)

  • Oh, Wongeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4659-4664
    • /
    • 2014
  • The noise produced in a factory is a cause of the noise complaint of the surrounding residential areas. In addition, it affects the work efficiency and health of workers. This paper presents the results of a basic study to reduce the noise generated from the blower, which is often used in the factory of a small and medium scale, using an active noise controller (ANC) in three-dimensional space. For this purpose, the simulator program, which can compare various parameters of the original noise and controlled noise, such as sound pressure levels, power spectra, and equivalent noise levels, was developed. The noise data was recorded at 17 points around a turbo fan blower currently being operated in a small-medium size factory. The simulation results showed that the power spectrum was reduced by a maximum of 40dB in the low frequency band and the average equivalent noise level attenuation was 12.6dB.

3D feature profile simulation for nanoscale semiconductor plasma processing

  • Im, Yeon Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.61.1-61.1
    • /
    • 2015
  • Nanoscale semiconductor plasma processing has become one of the most challenging issues due to the limits of physicochemical fabrication routes with its inherent complexity. The mission of future and emerging plasma processing for development of next generation semiconductor processing is to achieve the ideal nanostructures without abnormal profiles and damages, such as 3D NAND cell array with ultra-high aspect ratio, cylinder capacitors, shallow trench isolation, and 3D logic devices. In spite of significant contributions of research frontiers, these processes are still unveiled due to their inherent complexity of physicochemical behaviors, and gaps in academic research prevent their predictable simulation. To overcome these issues, a Korean plasma consortium began in 2009 with the principal aim to develop a realistic and ultrafast 3D topography simulator of semiconductor plasma processing coupled with zero-D bulk plasma models. In this work, aspects of this computational tool are introduced. The simulator was composed of a multiple 3D level-set based moving algorithm, zero-D bulk plasma module including pulsed plasma processing, a 3D ballistic transport module, and a surface reaction module. The main rate coefficients in bulk and surface reaction models were extracted by molecular simulations or fitting experimental data from several diagnostic tools in an inductively coupled fluorocarbon plasma system. Furthermore, it is well known that realistic ballistic transport is a simulation bottleneck due to the brute-force computation required. In this work, effective parallel computing using graphics processing units was applied to improve the computational performance drastically, so that computer-aided design of these processes is possible due to drastically reduced computational time. Finally, it is demonstrated that 3D feature profile simulations coupled with bulk plasma models can lead to better understanding of abnormal behaviors, such as necking, bowing, etch stops and twisting during high aspect ratio contact hole etch.

  • PDF

Design and Implementation of a Spectrum Engineering Simulator Based on GIS (GIS를 기반으로 한 스펙트럼 엔지니어링 시뮬레이터 설계 및 개발)

  • Lee, Hyeong-Su;Jeong, Yeong-Ho;Jeong, Jin-Uk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.144-152
    • /
    • 1996
  • Recently, as the demands for radio spectrum are growing and the number of cell sites is increasing rapidly, the spectrum engineering plays an important role in estimating frequency sharing and reuse. The radio propagation analysis is essential in the basic technology of radio network design such as deciding the service area and selecting the position of the base station. But, domestic propagation environment in which mountainous region is occupying over 70% of our terrain does not allow us to apply foreign studies which are deduced in highly different environments. Therefore, we need to have our propagation analysis system derived from our own terrain condition. In this paper, we propose the propagation prediction model which issuitable toour propagation environment, and also usinghis model, we implement thesimulator based on GIS(Geographic Information System)which can be applied to both spectrum engineering and radio propagation analysis. We showed that this simulator can well be applied to frequency assignment, propagation network design as well as other radio services. Considering the results of our analysis, we could guarantee the standard deviation of error between the measured data and predicted results as 5 to 7 dB.

  • PDF

Throughput Improvement and Power-Interruption Consideration of Fly-By-Wire Flight Control Computer (비행제어 컴퓨터의 Throughput 향상 및 Power-Interuption 대처 설계)

  • Lee, Cheol;Seo, Joon-Ho;Ham, Heung-Bin;Cho, In-Je;Woon, Hyung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.940-947
    • /
    • 2007
  • For the performance upgrade of a supersonic jet fighter, the processor and FLCC(Flight Control Computer) Architecture were upgraded from a baseline FLCC. Prior to the hardware implementation phase, the exact CPU throughput estimation is necessary. For this purpose, an experimental method for new FLCC throughput estimation was introduced in this study. While baseline FLCC operating, the CPU address bus was collected with logic analyzer, and then decoded to get the exact access times to each memory-memory and the number of program Instruction branches. Based on these data, a throughput test in CPU demo-board of the new FLCC configuration was performed. From test results, the CPU-Memory architecture was design-changed before FLCC hardware implementation phase. To check the flight stability degradation due to power-interrupt problem due to CPU-Memory architecture change, the piloted HILS (Hardware-In-the Loop Simulator) test was conducted.