• Title/Summary/Keyword: Data simulator

Search Result 1,399, Processing Time 0.029 seconds

Study on Incident Detection System Using Fuzzy Logic

  • Kim, Intaek;Lee, Eunggi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.268-271
    • /
    • 1998
  • this paper presents the potential application of fuzzy logic to the automatic incident detection system. While the conventional incident detection algorithms are based on a binary decision process, the algorithm using fuzzy logic can incorporate ambiguity which occurs in determining incidents. Since collecting good amount of data to construct data base for incidents is pretty expensive, a traffic simulator called FRESIM is used to simulate traffic condition in a freeway. Incident data are obtained by changing input parameters of the simulator and the fuzzy algorithm generates fuzzy rule for determining normal and incident traffic conditions. In this paper, various steps are described to test the algorithm and its results are summarized.

  • PDF

A data structure and algorithm for MOS logic-with-timing simulation (MOS 로직 및 타이밍 시뮬레이션을 위한 데이타구조 및 알고리즘)

  • 공진흥
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.206-219
    • /
    • 1996
  • This paper describes a data structure and evaluation algorithm to improve the perofmrances MOS logic-with-timing simulation in computation and accuracy. In order to efficiently simulate the logic and timing of driver-load networks, (1) a tree data structure to represent the mutual interconnection topology of switches and nodes in the driver-lod network, and (2) an algebraic modeling to efficiently deal with the new represetnation, (3) an evaluation algorithm to compute the linear resistive and capacitive behavior with the new modeling of driver-load networks are developed. The higher modeling presented here supports the structural and functional compatibility with the linear switch-level to simulate the logic-with-timing of digital MOS circuits at a mixed-level. This research attempts to integrate the new approach into the existing simulator RSIM, which yield a mixed-klevel logic-with-timing simulator MIXIM. The experimental results show that (1) MIXIM is a far superior to RSIM in computation speed and timing accuracy; and notably (2) th etiming simulation for driver-load netowrks produces the accuracy ranged within 17% with respect ot the analog simulator SPICE.

  • PDF

A Simulation/Monitoring System for the Navigation Control System in Bimodal-tram (바이모달트램의 자동운전시스템을 위한 시뮬레이션/모니터링 시스템 구현)

  • Choi, Jong-Sun;Kim, Dong-Min;Ryu, Je;Ryu, Hee-Moon;Byun, Yeun-Sub
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1061-1067
    • /
    • 2010
  • In this paper, we propose a simulator for testing of the Navigation Control System(NCS) in Bimodal-tram. NCS uses values of all sorts of sensors installed in vehicle to decide current position, and to control speed and steering of vehicle to go to a next position. Major functions of simulator are input processing of the driver and generation of virtual sensor data and driving profile(navigation path, magnetic information), and the NCS function. Virtual sensor data is generated according to output data from the NCS, driving profile and input processing of the driver, and monitoring systems is operated separatedly to confirm of NCS operation. This paper discusses about the implementation of the simulator, and analyzes and evaluates the simulation results.

  • PDF

Adaptive Culling Mechanism for Weather Phenomena Effect in Flight Simulator (항공시뮬레이터에서 기상 효과를 위한 적응적 컬링기법)

  • Cha, YoungJun;Kim, JongBum;Kim, Ki-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.61-66
    • /
    • 2014
  • Temporal disappearance of weather phenomena effect is frequently observed in flight simulator when large volume of terrain data are processed. This problem was solved by employing culling scheme at static ratio in the existing scheme. However, since this approach causes the irregular rendering speed according to volume of data, it is necessary to develop a new culling scheme to maintain steady rendering speed by adjusting the culling ratio dynamically. In this paper, we propose a new culling scheme to make use of distance of the visibility to determine culling ratio depending on volume of terrain data. The experimental results show that rendering speed is preserved by the proposed scheme without affecting the visuality at rendering the scene and weather phenomena effect together.

A Study on Terrain Construction of Unmanned Aerial Vehicle Simulator Based on Spatial Information (공간정보 기반의 무인비행체 시뮬레이터 지형 구축에 관한 연구)

  • Park, Sang Hyun;Hong, Gi Ho;Won, Jin Hee;Heo, Yong Seok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1122-1131
    • /
    • 2019
  • This paper covers research on terrain construction for unmanned aerial vehicle simulators using spatial information that was distributed by public institutions. Aerial photography, DEM, vector maps and 3D model data were used in order to create a realistic terrain simulator. A data converting method was suggested while researching, so it was generated to automatically arrange and build city models (vWorld provided) and classification methods so that realistic images could be generated by 3D objects. For example: rivers, forests, roads, fields and so on, were arranged by aerial photographs, vector map (land cover map) and terrain construction based on the tile map used by DEM. In order to verify the terrain data of unmanned aircraft simulators produced by the proposed method, the location accuracy was verified by mounting onto Unreal Engine and checked location accuracy.

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

Cycle-accurate NPU Simulator and Performance Evaluation According to Data Access Strategies (Cycle-accurate NPU 시뮬레이터 및 데이터 접근 방식에 따른 NPU 성능평가)

  • Kwon, Guyun;Park, Sangwoo;Suh, Taeweon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.217-228
    • /
    • 2022
  • Currently, there are increasing demands for applying deep neural networks (DNNs) in the embedded domain such as classification and object detection. The DNN processing in embedded domain often requires custom hardware such as NPU for acceleration due to the constraints in power, performance, and area. Processing DNN models requires a large amount of data, and its seamless transfer to NPU is crucial for performance. In this paper, we developed a cycle-accurate NPU simulator to evaluate diverse NPU microarchitectures. In addition, we propose a novel technique for reducing the number of memory accesses when processing convolutional layers in convolutional neural networks (CNNs) on the NPU. The main idea is to reuse data with memory interleaving, which recycles the overlapping data between previous and current input windows. Data memory interleaving makes it possible to quickly read consecutive data in unaligned locations. We implemented the proposed technique to the cycle-accurate NPU simulator and measured the performance with LeNet-5, VGGNet-16, and ResNet-50. The experiment shows up to 2.08x speedup in processing one convolutional layer, compared to the baseline.

Design of Force Control System for a Hydraulic Road Simulator using QFT (QFT 를 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Nan, Yang-Hai;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1109-1114
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

  • PDF

Design of Force Control System for a Hydraulic Road Simulator Using Quantitative Feedback Theory (정량적 피드백 이론을 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1069-1076
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT(Quantitative Feedback Theory) is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. Tracking specification is satisfied with upper and lower bound tolerances on the steep response of the system to the reference signal. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator (3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments