• 제목/요약/키워드: Data sensing-control

검색결과 498건 처리시간 0.03초

Fuzzy Neural Network에 응집제 투입률의 자동결정 (Automatic Determination of Coagulant Dosing Rate Using Fuzzy Neural Network)

  • 정우섭;오석영
    • 한국정밀공학회지
    • /
    • 제14권1호
    • /
    • pp.101-107
    • /
    • 1997
  • Recently, as the raw water quality becomes to be polluted and the seasonal and local variation of water quality becomes to be severe, an exact control of coagulant dosing have been required in the water treat- ment plant. The amounts of coagulant is related to the raw water quality such as turbidity, alkalinity, water temperature, pH and edectrical conductivity. However the process of chemical reaction has not been clarified so far, so the dosing rate has been decided by jar-test, which is taken one or two hours. For the sake of this coagulant dosing control, fuzzy neural network to fuse fuzzy logic and neural network was proposed, and the scheme was applied to automatic determination of coagulant dosing rate. This controller can automatically identify the if-then rules and tune the membership functions by utilizing expert's cintrol data. It is shown that determination of coagulant dosing rate according to real time sensing of water quality is very effect.

  • PDF

Automatic Control on Dosing Coagulant as to Stream Current

  • Oh, Sueg-Young;Byun, Doo-Gyoon;Hwang, Jae-Moon;Song, Hyun-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1318-1321
    • /
    • 2005
  • As recently raw water quality has been polluted as well as its quality has been remarkably varied according to season and region, the precise control of coagulant dosage is being keenly required in water treatment plants. The amount of coagulant is closely related to raw water quality such as turbidity, alkalinity, water temperature, pH, electrical conductivity, etc. Since the optimum quantity of chemicals is not yet finalized, so dosage rate must be decided by using jar test that takes one or two hours. Hereupon, the output signal of stream current and multi-regression on historical data were proposed to be applied to the coagulant dosing control. In consequence of applying the scheme to automatic determination of the dosage rate, it was testified that the determination of dosage rate was very effective in case it is performed as to real-time sensing of water quality and the output signal of stream current.

  • PDF

Assessment of a smartphone-based monitoring system and its application

  • Ahn, Hoyong;Choi, Chuluong;Yu, Yeon
    • 대한원격탐사학회지
    • /
    • 제30권3호
    • /
    • pp.383-397
    • /
    • 2014
  • Information technology advances are allowing conventional surveillance systems to be combined with mobile communication technologies, creating ubiquitous monitoring systems. This paper proposes monitoring system that uses smart camera technology. We discuss the dependence of interior orientation parameters on calibration target sheets and compare the accuracy of a three-dimensional monitoring system with camera location calculated by space resectioning using a Digital Surface Model (DSM) generated from stereo images. A monitoring housing is designed to protect a camera from various weather conditions and to provide the camera for power generated from solar panel. A smart camera is installed in the monitoring housing. The smart camera is operated and controlled through an Android application. At last the accuracy of a three-dimensional monitoring system is evaluated using a DSM. The proposed system was then tested against a DSM created from ground control points determined by Global Positioning Systems (GPSs) and light detection and ranging data. The standard deviation of the differences between DSMs are less than 0.12 m. Therefore the monitoring system is appropriate for extracting the information of objects' position and deformation as well as monitoring them. Through incorporation of components, such as camera housing, a solar power supply, the smart camera the system can be used as a ubiquitous monitoring system.

SEASONAL DISTRIBUTION OF CHLOROPHYLL-A CONCENTRATION DEDUCED FROM MODIS OCEAN COLOR DATA IN THE EDDY AREA HYUGA-NADA EAST KYUSHU SEAWATER

  • Winarso, Gathot;Hiroyuki, Kikukawa
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.475-478
    • /
    • 2006
  • Total primary production resulting from the photosynthetic process can be defined as the amount of organic matter produced in a given period of time. It is proportional to the chlorophyll-a (chl-a) values in the surface layer of the ocean. The MODIS board on Aqua satellite measures visible and infrared radiation in 36 wavebands, providing simultaneous images of chl-a concentration and sea surface temperature (SST) in the upper layer of the sea. The seasonal distribution of chl-a concentration during one year from April 2005 to March 2006 was examined. Light has a role of starting the seasonal cycle. The Kuroshio Current in this area induces many oceanographical features affecting to the change of seasonal control. The chl-a concentration is also seasonal, which is low in summer and high in winter. In summer, the meandering of Kuroshio Current induces strong eddies and increases the chl-a concentration. In autumn, the delayed small autumn bloom occurred until last December due to the Kuroshio Current. When the Kuroshio axis moves far from the coast, the coastal water dominates and increases the concentration even in the winter. The spring bloom starts early at the beginning of March and decreases during the spring.

  • PDF

High altitude powered lighter-than-air vehicle as remote sensing platform

  • Onda, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1361-1364
    • /
    • 1990
  • In order to tackle global environmental problems such as destruction of the ozone layer or climatic changes due to atmospheric temperature increase, the acquisition of plentiful and precise data is necessary. Therefore, a means of conducting long-lasting high-resolution measurements over broad areas is required. A feasibility study has been made on a high altitude (20km), super-pressured helium-filled PLTA (Powered Ligher-than-Air) vehicle as an ideal platform for environmental observation. It has a long service life and carries a larger payload than an artificial satellite. This PLTA platform uses an electric propulsion system to maintain position in space against wind currents. The thruster is driven by solar power acquired from solar cells. For night use, solar energy is stored in regenerative fuel cells. This study focuses on energy balance and structural analysis of the hull and platform. The platform is capable of conducting high resolution remote sensing as well as having the capability to serve as a telecommunications relay. The platform could replace a number of ground-based telecommunications relay facilities, guaranteeing sufficient radio frequency intensity to secure good quality telecommunication transmittal. The altitude at which the platform resides has the lowest wind flow in the lower stratosphere, and permits viewing from the ground within a 1,000km range. Because this altitude is much lower than that required of an artificial satellite, the measuring resolution is a couple of thousand times higher than with artificial satellites. The platform can also be used to chase typhoons and observe them from their sources in tropical regions.

  • PDF

Performance analysis on the geometric correction algorithms using GCPs - polynomial warping and full camera modelling algorithm

  • Shin, Dong-Seok;Lee, Young-Ran
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.252-256
    • /
    • 1998
  • Accurate mapping of satellite images is one of the most important Parts in many remote sensing applications. Since the position and the attitude of a satellite during image acquisition cannot be determined accurately enough, it is normal to have several hundred meters' ground-mapping errors in the systematically corrected images. The users which require a pixel-level or a sub-pixel level mapping accuracy for high-resolution satellite images must use a number of Ground Control Points (GCPs). In this paper, the performance of two geometric correction algorithms is tested and compared. One is the polynomial warping algorithm which is simple and popular enough to be implemented in most of the commercial satellite image processing software. The other is full camera modelling algorithm using Physical orbit-sensor-Earth geometry which is used in satellite image data receiving, pre-processing and distribution stations. Several criteria were considered for the performance analysis : ultimate correction accuracy, GCP representatibility, number of GCPs required, convergence speed, sensitiveness to inaccurate GCPs, usefulness of the correction results. This paper focuses on the usefulness of the precision correction algorithm for regular image pre-processing operations. This means that not only final correction accuracy but also the number of GCPs and their spatial distribution required for an image correction are important factors. Both correction algorithms were implemented and will be used for the precision correction of KITSAT-3 images.

  • PDF

회전식 프레임 카메라 시스템을 이용한 실내 3차원 모델링 및 정확도 평가 (Indoor 3D Modeling Using a Rotating Stereo Frame Camera System and Accuracy Evaluation)

  • 강정인;이임평
    • 대한원격탐사학회지
    • /
    • 제32권5호
    • /
    • pp.511-527
    • /
    • 2016
  • 본 연구는 실내 영상을 저비용으로 취득할 수 있는 회전식 스테레오 프레임 카메라 시스템을 제안하고 이를 이용해 생성한 실내 3차원 모델의 정확도를 평가하였다. 하나의 실험 대상지를 선정하여 제안한 시스템과 토탈스테이션을 이용하여 각각 영상과 기준점 데이터를 취득하였다. 취득한 데이터로부터 다양한 조합의 입력 데이터를 상용 사진측량 소프트웨어로 처리하여 실내 3차원 모델을 생성하였다. 생성된 모델을 정성적, 정량적인 분석을 통해 제안한 시스템을 이용한 실내 3차원 모델링 가능성을 평가하였다. 그 결과 제안한 시스템을 이용하여 생성한 실내 3차원 모델은 높지 않은 정확도를 요구하는 실내 서비스에 활용될 수 있을 것으로 보인다.

Selecting a Synthesizable RISC-V Processor Core for Low-cost Hardware Devices

  • Gookyi, Dennis Agyemanh Nana;Ryoo, Kwangki
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1406-1421
    • /
    • 2019
  • The Internet-of-Things (IoT) has been deployed in almost every facet of our day to day activities. This is made possible because sensing and data collection devices have been given computing and communication capabilities. The devices implement System-on-Chips (SoCs) that incorporate a lot of functionalities, yet they are severely constrained in terms of memory capacitance, hardware area, and power consumption. With the increase in the functionalities of sensing devices, there is a need for low-cost synthesizable processors to handle control, interfacing, and error processing. The first step in selecting a synthesizable processor core for low-cost devices is to examine the hardware resource utilization to make sure that it fulfills the requirements of the device. This paper gives an analysis of the hardware resource usage of ten synthesizable processors that implement the Reduced Instruction Set Computer Five (RISC-V) Instruction Set Architecture (ISA). All the ten processors are synthesized using Vivado v2018.02. The maximum frequency, area, and power reports are extracted and a comparison is made to determine which processor is ideal for low-cost hardware devices.

소프트-팁이 장착된 듀얼-핑거의 안정적 파지 제어에 관한 연구 (A Study on Stable Grasping Control of Dual-fingers with Soft-Tips)

  • 심재군;한형용;양순용;이병룡;안경관;김성수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.219-224
    • /
    • 2002
  • This paper aims to derive a mathematical model of the dynamics of handling tasks in robot finger which stable grasping and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of area-contacts of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Thirdly, simulation results are shown and the effects of geometric constraints of area-contact is discussed. Finally, it is shown that even in the simplest case of dual single D.O.F manipulators there exists a sensory feedback from sensing data of the rotational angle of the object to command inputs to joint actuators and this feedback connection from sensing to action eventually realizes secure grasping of the object, provided that the object is of rectangular shape and motion is confined to a horizontal plane.

  • PDF

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.