• Title/Summary/Keyword: Data normalization

Search Result 488, Processing Time 0.029 seconds

Comparison of Normalizations for cDNA Microarray Data

  • Kim, Yun-Hui;Kim, Ho;Park, Ung-Yang;Seo, Jin-Yeong;Jeong, Jin-Ho
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.175-181
    • /
    • 2002
  • cDNA microarray experiments permit us to investigate the expression levels of thousands of genes simultaneously and to make it easy to compare gene expression from different populations. However, researchers are asked to be cautious in interpreting the results because of the unexpected sources of variation such as systematic errors from the microarrayer and the difference of cDNA dye intensity. And the scanner itself calculates both of mean and median of the signal and background pixels, so it follows a selection which raw data will be used in analysis. In this paper, we compare the results in each case of using mean and median from the raw data and normalization methods in reducing the systematic errors with arm's skin cells of old and young males. Using median is preferable to mean because the distribution of the test statistic (t-statistic) from the median is more close to normal distribution than that from mean. Scaled print tip normalization is better than global or lowess normalization due to the distribution of the test-statistic.

  • PDF

Study on Improving Learning Speed of Artificial Neural Network Model for Ammunition Stockpile Reliability Classification (저장탄약 신뢰성분류 인공신경망모델의 학습속도 향상에 관한 연구)

  • Lee, Dong-Nyok;Yoon, Keun-Sig;Noh, Yoo-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.374-382
    • /
    • 2020
  • The purpose of this study is to improve the learning speed of an ammunition stockpile reliability classification artificial neural network model by proposing a normalization method that reduces the number of input variables based on the characteristic of Ammunition Stockpile Reliability Program (ASRP) data without loss of classification performance. Ammunition's performance requirements are specified in the Korea Defense Specification (KDS) and Ammunition Stockpile reliability Test Procedure (ASTP). Based on the characteristic of the ASRP data, input variables can be normalized to estimate the lot percent nonconforming or failure rate. To maintain the unitary hypercube condition of the input variables, min-max normalization method is also used. Area Under the ROC Curve (AUC) of general min-max normalization and proposed 2-step normalization is over 0.95 and speed-up for marching learning based on ASRP field data is improved 1.74 ~ 1.99 times depending on the numbers of training data and of hidden layer's node.

Development of a Vehicle Classification Algorithm Using an Inductive Loop Detector on a Freeway (단일 루프 검지기를 이용한 차종 분류 알고리즘 개발)

  • 이승환;조한선;최기주
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.1
    • /
    • pp.135-154
    • /
    • 1996
  • This paper presents a heuristic algorithm for classifying vehicles using a single loop detector. The data used for the development of the algorithm are the frequency variation of a vehicle sensored from the circle-shaped loop detectors which are normal buried beneath the expressway. The pre-processing of data is required for the development of the algorithm that actually consists of two parts. One is both normalization of occupancy time and that with frequency variation, the other is finding of an adaptable number of sample size for each vehicle category and calculation of average value of normalized frequencies along with occupancy time that will be stored for comparison. Then, detected values are compared with those stored data to locate the most fitted pattern. After the normalization process, we developed some frameworks for comparison schemes. The fitted scales used were 10 and 15 frames in occupancy time(X-axis) and 10 and 15 frames in frequency variation (Y-axis). A combination of X-Y 10-15 frame turned out to be the most efficient scale of normalization producing 96 percent correct classification rate for six types of vehicle.

  • PDF

2D ECG Compression Method Using Sorting and Mean Normalization (정렬과 평균 정규화를 이용한 2D ECG 신호 압축 방법)

  • Lee, Gyu-Bong;Joo, Young-Bok;Han, Chan-Ho;Huh, Kyung-Moo;Park, Kil-Houm
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.193-195
    • /
    • 2009
  • In this paper, we propose an effective compression method for electrocardiogram(ECG) signals. 1-D ECG signals are reconstructed to 2-D ECG data by period and complexity sorting schemes with image compression techniques to Increase inter and intra-beat correlation. The proposed method added block division and mean-period normalization techniques on top of conventional 2-D data ECG compression methods. JPEG 2000 is chosen for compression of 2-D ECG data. Standard MIT-BIH arrhythmia database is used for evaluation and experiment. The results show that the proposed method outperforms compared to the most recent literature especially in case of high compression rate.

  • PDF

A Suggestion to Establish Statistical Treatment Guideline for Aircraft Manufacturer (국산 복합재료 시험데이터 처리지침 수립을 위한 제언)

  • Suh, Jangwon
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.39-43
    • /
    • 2014
  • This paper examines the statistical process that should be performed with caution in the composite material qualification and equivalency process, and describes statistically significant considerations on outlier finding and handling process, data pooling through normalization process, review for data distributions and design allowables determination process for structural analysis. Based on these considerations, the need for guidance on statistical process for aircraft manufacturers who use the composite material properties database are proposed.

Ovarian Cancer Microarray Data Classification System Using Marker Genes Based on Normalization (표준화 기반 표지 유전자를 이용한 난소암 마이크로어레이 데이타 분류 시스템)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.2032-2037
    • /
    • 2011
  • Marker genes are defined as genes in which the expression level characterizes a specific experimental condition. Such genes in which the expression levels differ significantly between different groups are highly informative relevant to the studied phenomenon. In this paper, first the system can detect marker genes that are selected by ranking genes according to statistics after normalizing data with methods that are the most widely used among several normalization methods proposed the while, And it compare and analyze a performance of each of normalization methods with mult-perceptron neural network layer. The Result that apply Multi-Layer perceptron algorithm at Microarray data set including eight of marker gene that are selected using ANOVA method after Lowess normalization represent the highest classification accuracy of 99.32% and the lowest prediction error estimate.

DEVELOPMENT OF AN AUTOMATIC PROCESSING PROGRAM FOR BOES DATA II (BOES 관측데이터의 자동처리 프로그램 개발 II)

  • Kang, Dong-Ii;Park, Hong-Suh;Han, In-Woo;Valyavin, G.;Lee, Byeong-Cheol;Kim, Kang-Min
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.101-112
    • /
    • 2006
  • We developed a new program for automatic continuum normalization of Echelle spectrographic data. Using this algorithm, we have determined spectral continuum of almost BOES data. The first advantage of this algorithm is that we can save much time for continuum determination and normalization. The second advantage is that the result of this algorithm is very reliable for almost spectral type of spectrum. But this algorithm cannot be applied directly to the spectrum which has very strong and broad emission lines, for example Wolf-Rayet type spectrum. We implanted this algorithm to the program which was developed in the previous study. And we introduced more upgraded BOES data reduction program. This program has more convenient graphical user interface environment, so users can easily reduce BOES data. Lastly, we presented the result of study on line profile variation of magnetic Ap/Bp stars analyzed using this program.

Performance Evaluation of Nonhomogeneity Detector According to Various Normalization Methods in Nonhomogeneous Clutter Environment (불균일한 클러터 환경 안에서 Nonhomogeneity Detector의 다양한 정규화 방법에 따른 성능 평가)

  • Ryu, Jang-Hee;Jeong, Ji-Chai
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.72-79
    • /
    • 2009
  • This paper describes the performance evaluation of NHD(nonhomogeneity detector) for STAP(space-time adaptive processing) airborne radar according to various normalization methods in the nonhomogeneous clutter environment. In practice, the clutter can be characterized as random variation signals, because it sometimes includes signals with very large magnitude like impulsive signal due to the system environment. The received interference signals are composed of homogeneous and nonhomogeneous data. In this situation, NHB is needed to maintain the STAP performance. The normalization using the NHD result is an effective method for removing the nonhomogeneous data. The optimum normalization can be performed by a representative value considered with a characteristic of the given data, so we propose the K-means clustering algorithm. The characteristic of random variation data due to nonhomogeneous clutters can be considered by the number of clusters, and then the representative value for selecting the homogeneous data is determined in the clustering result. In order to reflect a characteristic of the nonstationary interference data, we also investigate the algorithm for a calculation of the proper number of clusters. Through our simulations, we verified that the K-means clustering algorithm has very superior normalization and target detection performances compared with the previous introduced normalization methods.

  • PDF

Affine-Invariant Image normalization for Log-Polar Images using Momentums

  • Son, Young-Ho;You, Bum-Jae;Oh, Sang-Rok;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1140-1145
    • /
    • 2003
  • Image normalization is one of the important areas in pattern recognition. Also, log-polar images are useful in the sense that their image data size is reduced dramatically comparing with conventional images and it is possible to develop faster pattern recognition algorithms. Especially, the log-polar image is very similar with the structure of human eyes. However, there are almost no researches on pattern recognition using the log-polar images while a number of researches on visual tracking have been executed. We propose an image normalization technique of log-polar images using momentums applicable for affine-invariant pattern recognition. We handle basic distortions of an image including translation, rotation, scaling, and skew of a log-polar image. The algorithm is experimented in a PC-based real-time vision system successfully.

  • PDF

A design of floating-point arithmetic unit for superscalar microprocessor (수퍼스칼라 마이크로프로세서용 부동 소수점 연산회로의 설계)

  • 최병윤;손승일;이문기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1345-1359
    • /
    • 1996
  • This paper presents a floating point arithmetic unit (FPAU) for supescalar microprocessor that executes fifteen operations such as addition, subtraction, data format converting, and compare operation using two pipelined arithmetic paths and new rounding and normalization scheme. By using two pipelined arithmetic paths, each aritchmetic operation can be assigned into appropriate arithmetic path which high speed operation is possible. The proposed normalization an rouding scheme enables the FPAU to execute roundig operation in parallel with normalization and to reduce timing delay of post-normalization. And by predicting leading one position of results using input operands, leading one detection(LOD) operation to normalize results in the conventional arithmetic unit can be eliminated. Because the FPAU can execuate fifteen single-precision or double-precision floating-point arithmetic operations through three-stage pipelined datapath and support IEEE standard 754, it has appropriate structure which can be ingegrated into superscalar microprocessor.

  • PDF