The Journal of Asian Finance, Economics and Business
/
v.8
no.7
/
pp.55-66
/
2021
The purpose of this study is to analyze the relationship and effects of variables both directly and indirectly (e.g., investment (INV), government expenditure (GE), unemployment rate (UR), economic growth (EG), and income inequality). The analytical phases consist, first, to transform the data using the Log Natural (Ln) method. Second, to check normality and multicollinearity of data. Third, to test direct effects of variables (government expenditure and investment effect on the unemployment rate and economic growth; investment on government expenditure; economic growth on unemployment rate; economic growth and unemployment rate on income inequality). Fourth, to test indirect effects using Sobel test, which involves UR and EG as intervening variable. Fifth, to test hypotheses with p-value < 0.05. The results of the study reveal that, of the 12 relationships, statistics show that 11 variations of the association have significant positive and negative effects. Theoretically, the different characters and goals of GE and INV in each country will have a different impact on EG and UR goals. The study provides an input, especially for the government. To create optimal EG through GE and INV, it is necessary to allocate budgets to industrial sectors that can absorb a massive labor force and to new economic growth sectors.
Logit models are commonly used to predicting and classifying categorical response variables. Most Bayesian approaches to logit models are implemented based on the Metropolis-Hastings algorithm. However, the algorithm has disadvantages of slow convergence and difficulty in ensuring adequacy for the proposal distribution. Therefore, we use auxiliary mixture sampler proposed by Frühwirth-Schnatter and Frühwirth (2007) to estimate logit models. This method introduces two sequences of auxiliary latent variables to make logit models satisfy normality and linearity. As a result, the method leads that logit model can be easily implemented by Gibbs sampling. We applied the proposed method to diabetes data from the Community Health Survey (2020) of the Korea Disease Control and Prevention Agency and compared performance with Metropolis-Hastings algorithm. In addition, we showed that the logit model using auxiliary mixture sampling has a great classification performance comparable to that of the machine learning models.
Maykely Naara Morais Rodrigues;Kely Firmino Bruno;Ana Helena Goncalves de Alencar;Julyana Dumas Santos Silva;Patricia Correia de Siqueira;Daniel de Almeida Decurcio;Carlos Estrela
Restorative Dentistry and Endodontics
/
v.46
no.4
/
pp.59.1-59.14
/
2021
Objectives: This study compared the Biodentine, MTA Repair HP, and Bio-C Repair bioceramics in terms of bond strength to dentin, failure mode, and compression. Materials and Methods: Fifty-four slices obtained from the cervical third of 18 single-rooted human mandibular premolars were randomly distributed (n = 18). After insertion of the bioceramic materials, the push-out test was performed. The failure mode was analyzed using stereomicroscopy. Another set of cylindrically-shaped bioceramic samples (n = 10) was prepared for compressive strength testing. The normality of data distribution was analyzed using the Shapiro-Wilk test. The Kruskal-Wallis and Friedman tests were used for the push-out test data, while compressive strength was analyzed with analysis of variance and the Tukey test, considering a significance level of 0.05. Results: Biodentine presented a higher median bond strength value (14.79 MPa) than MTA Repair HP (8.84 MPa) and Bio-C Repair (3.48 MPa), with a significant difference only between Biodentine and Bio-C Repair. In the Biodentine group, the most frequent failure mode was mixed (61%), while in the MTA Repair HP and Bio-C Repair groups, it was adhesive (94% and 72%, respectively). Biodentine showed greater resistance to compression (29.59 ± 8.47 MPa) than MTA Repair HP (18.68 ± 7.40 MPa) and Bio-C Repair (19.96 ± 3.96 MPa) (p < 0.05). Conclusions: Biodentine showed greater compressive strength than MTA Repair HP and Bio-C Repair, and greater bond strength than Bio-C Repair. The most frequent failure mode of Biodentine was mixed, while that of MTA Repair HP and Bio-C Repair was adhesive.
Marco Isaac;Dina Mohamed ElBeshlawy;Ahmed Elsobki;Dina Fahim Ahmed;Sarah Mohammed Kenawy
Imaging Science in Dentistry
/
v.54
no.2
/
pp.147-157
/
2024
Purpose: The aim of this study was to explore the correlations of cone-beam computed tomographic findings with the apnea-hypopnea index in patients with obstructive sleep apnea. Materials and Methods: Forty patients with obstructive sleep apnea were selected from the ear-nose-throat (ENT) outpatient clinic, Faculty of Medicine, Mansoura University. Cone-beam computed tomography was performed for each patient at the end of both inspiration and expiration. Polysomnography was carried out, and the apnea-hypopnea index was obtained. Linear measurements, including cross-sectional area and the SNA and SNB angles, were obtained. Four oral and maxillofacial radiologists categorized pharyngeal and retropalatal airway morphology and calculated the airway length and volume. Continuous data were tested for normality using the Kolmogorov-Smirnov test and reported as the mean and standard deviation or as the median and range. Categorical data were presented as numbers and percentages, and the significance level was set at P<0.05. Results: The minimal value of the cross-sectional area, SNB angle, and airway morphology at the end of inspiration demonstrated a statistically significant association (P<0.05) with the apnea-hypopnea index, with excellent agreement. No statistically significant difference was found in the airway volume, other linear measurements, or retropalatal airway morphology. Conclusion: Cone-beam computed tomographic measurements in obstructive sleep apnea patients may be used as a supplement to a novel radiographic classification corresponding to the established clinical apnea-hypopnea index classification.
Journal of the Korean Data and Information Science Society
/
v.27
no.6
/
pp.1465-1475
/
2016
In order to secure safe meals, the hazards of microorganisms associated with food poisoning accident should be monitored and controlled in real situations. It is necessary to determined the correlation between existing common bacteria number (aerobic plate count; APC) and RLU (relative light unit) in cookware. In this paper, we investigate the correlation between ATP (RUL) and APC (CFU) by using three types of transform (inverse, square root, log transforms) of raw data in two steps. Among these transforms, the log transform at the first step has been found to be optimal for the data of cutting board, knife, soup bowl (stainless), and tray (carbon). The square root-inverse and the square root-square root transform at the second step have been shown to be optimal respectively for the cup and for the soup bowl (carbon) data.
Journal of the Korean Data and Information Science Society
/
v.28
no.6
/
pp.1457-1469
/
2017
Private education expenses is one of the key issues in Korea and there have been many discussions about it. Academically, most of previous researches for private education expenses have used multiple regression linear model based on ordinary least squares (OLS) method. However, if the data do not satisfy the basic assumptions of the OLS method such as the normality and homoscedasticity, there is a problem with the reliability of estimations of parameters. In this case, quantile regression model is preferred to OLS model since it does not depend on the assumptions of nonnormality and heteroscedasticity for the data. In the present study, the data from a survey on private education expenses, conducted by Statistics Korea in 2015 has been analyzed for investigation of the impacting factors for private education expenses. Since the data do not satisfy the OLS assumptions, quantile regression model has been employed in Bayesian approach by using gibbs sampling method. The analysis results show that the gender of the student, parent's age, and the time and cost of participating after school are not significant. Household income is positively significant in proportion to the same size for all levels (quantiles) of private education expenses. Spending on private education in Seoul is higher than other regions and the regional difference grows as private education expenditure increases. Total time for private education and student's achievement have positive effect on the lower quantiles than the higher quantiles. Education level of father is positively significant for midium-high quantiles only, but education level of mother is for all but low quantiles. Participating after school is positively significant for the lower quantiles but EBS textbook cost is positively significant for the higher quantiles.
Kim, Dong-Hwan;Lee, Wan-Ok;Hong, Yang-Ki;Jeon, Hyoung-Joo;Kim, Kyung-Hwan;Kang, Hyejin;Song, Mi-Young
Korean Journal of Ecology and Environment
/
v.52
no.3
/
pp.274-283
/
2019
Beta diversity is an efficient means of assessing the spatial variation in community composition among sites. To present fish community variation and LCBD (Local Contribution to Beta Diversity) among sites in stream, 6 sampling sites were selected in Cheonggye stream. Fish communities, environmental and habitat variables were collected at sites from April 2014 to October 2015. We used the total variance of the fish community data table (site-by-species community table) based on different forms, presence-absence, abundance, and Hellinger transformation, to estimate and compare beta diversity and LCBD. Fish community data table transformed by Hellinger distance showed the higher values of beta diversity than presence-absence and abundance data table. A similar patterns of LCBD were observed with presence-absence and Hellinger transformed data table. Low value of beta diversity calculated by community data table with abundance was due to the non-normality of fish assemblage data. Additionally, correlation coefficients were calculated to evaluate the relationships among LCBD, community indices and physicochemical variables. LCBD showed negative correlation coefficients with Shannon diversity. Overall, application of beta diversity analysis is an efficient method of addressing spatial variation of fish communities and ecological uniqueness of the sites in stream.
An antibiotic 'P', which is one of the products of the Gist Brocades N. V. is being tested by its research department as fungicide on seed-potatoes. For this testing they designed experiments, with two control groups, one competitor's product, eight formulations of the antibiotic to be tested in different concentrations and one mercury treatment which can not be used in practice. The treated potatoes were planted in three different regions, where bifferent conditions prevail. After several months the harvested potatoes are divided in groups according to their diameter, potato illness is analysed and counted. These data were summarised in percentage and given to us for Analysis. We approached and analysed the data by following methods: a. Computation of the mean and standard deviation of the percenage of good results in each size group and treatment. b. Computation of the experimental errors by substraction of each treatment mean from observed data. c. Description of the frequency table, plotting of a histogram and a normal curve on same graph to check normality. d. Test of normality paper and chi-sqeare test to check the goodness of fit to a normal curve. e. Test for homogeneity of variance in each treatment with the Cochran's test and Hartley's test. f. Analysis of Variance for testing the means by one way classifications. g. Drawing of graphs with upper and lower confidence limits to show the effect of different treatments. h. T-test and F-test to two Control mean and variance for making one control of Dunnett's test. i. Dunnett's Test and calculations for numerical comarision of different treatments wth one control. In region R, where the potatoes were planted, it was this year very dry and rather bad conditions to grow potatoes prevailed during the experimental period. The results of this investigation show us that treatment No.2, 3 and 4 are significantly different from other treatments and control groups (none treated, just like natural state). Treatment no.2 is the useless mercury formulation. So only No. 3 and 4, which have high concentrations of antibiotic 'P', gave a good effect to the potatoes. As well as the competitors product, middle and low concentrated formulations are not significantly different from control gro-ups of every size. In region w, where the potatoes got the same treatments as in region R, prevailed better weather conditions and was enough water obtainable from the lake. The results in this region showed that treatment No. 2, 3, 4, and 5 are Significantly different from other treatments and the control groups. Again No.2 is the mercury treatmentin this investigation. Not only high concentrated formulation of antibiotic 'P', but also the competitor's poroduct gave good results. But, the effect of 'P', was better than the competitors porduct. In region G, where the potatoes got the same treatments as in the regions R and w. and the climate conditions were equal to region R, the results showed that most of the treatments are not significantly different from the control groups. Only treatment no. 3 was a little bit different from the others. but not Significantly different. It seems to us that the difference between the results in the three regions was caused by certain conditions like, the nature of the soil the degres of moisture and hours of sunshine, but we are not sure of that. As a conclusion, we can say that antibiotic 'P' has a good effect on potatoes, but in most investigations a rather high concentration of 'P' was required in formulations.
This study uses corporate data from 2012 to 2018 when K-IFRS was applied in earnest to predict default risks. The data used in the analysis totaled 10,545 rows, consisting of 160 columns including 38 in the statement of financial position, 26 in the statement of comprehensive income, 11 in the statement of cash flows, and 76 in the index of financial ratios. Unlike most previous prior studies used the default event as the basis for learning about default risk, this study calculated default risk using the market capitalization and stock price volatility of each company based on the Merton model. Through this, it was able to solve the problem of data imbalance due to the scarcity of default events, which had been pointed out as the limitation of the existing methodology, and the problem of reflecting the difference in default risk that exists within ordinary companies. Because learning was conducted only by using corporate information available to unlisted companies, default risks of unlisted companies without stock price information can be appropriately derived. Through this, it can provide stable default risk assessment services to unlisted companies that are difficult to determine proper default risk with traditional credit rating models such as small and medium-sized companies and startups. Although there has been an active study of predicting corporate default risks using machine learning recently, model bias issues exist because most studies are making predictions based on a single model. Stable and reliable valuation methodology is required for the calculation of default risk, given that the entity's default risk information is very widely utilized in the market and the sensitivity to the difference in default risk is high. Also, Strict standards are also required for methods of calculation. The credit rating method stipulated by the Financial Services Commission in the Financial Investment Regulations calls for the preparation of evaluation methods, including verification of the adequacy of evaluation methods, in consideration of past statistical data and experiences on credit ratings and changes in future market conditions. This study allowed the reduction of individual models' bias by utilizing stacking ensemble techniques that synthesize various machine learning models. This allows us to capture complex nonlinear relationships between default risk and various corporate information and maximize the advantages of machine learning-based default risk prediction models that take less time to calculate. To calculate forecasts by sub model to be used as input data for the Stacking Ensemble model, training data were divided into seven pieces, and sub-models were trained in a divided set to produce forecasts. To compare the predictive power of the Stacking Ensemble model, Random Forest, MLP, and CNN models were trained with full training data, then the predictive power of each model was verified on the test set. The analysis showed that the Stacking Ensemble model exceeded the predictive power of the Random Forest model, which had the best performance on a single model. Next, to check for statistically significant differences between the Stacking Ensemble model and the forecasts for each individual model, the Pair between the Stacking Ensemble model and each individual model was constructed. Because the results of the Shapiro-wilk normality test also showed that all Pair did not follow normality, Using the nonparametric method wilcoxon rank sum test, we checked whether the two model forecasts that make up the Pair showed statistically significant differences. The analysis showed that the forecasts of the Staging Ensemble model showed statistically significant differences from those of the MLP model and CNN model. In addition, this study can provide a methodology that allows existing credit rating agencies to apply machine learning-based bankruptcy risk prediction methodologies, given that traditional credit rating models can also be reflected as sub-models to calculate the final default probability. Also, the Stacking Ensemble techniques proposed in this study can help design to meet the requirements of the Financial Investment Business Regulations through the combination of various sub-models. We hope that this research will be used as a resource to increase practical use by overcoming and improving the limitations of existing machine learning-based models.
Purpose - This paper aims to provide a step-by-step approach to factor analytic procedures, such as principal component analysis (PCA) and exploratory factor analysis (EFA), and to offer a guideline for factor analysis. Authors have argued that the results of PCA and EFA are substantially similar. Additionally, they assert that PCA is a more appropriate technique for factor analysis because PCA produces easily interpreted results that are likely to be the basis of better decisions. For these reasons, many researchers have used PCA as a technique instead of EFA. However, these techniques are clearly different. PCA should be used for data reduction. On the other hand, EFA has been tailored to identify any underlying factor structure, a set of measured variables that cause the manifest variables to covary. Thus, it is needed for a guideline and for procedures to use in factor analysis. To date, however, these two techniques have been indiscriminately misused. Research design, data, and methodology - This research conducted a literature review. For this, we summarized the meaningful and consistent arguments and drew up guidelines and suggested procedures for rigorous EFA. Results - PCA can be used instead of common factor analysis when all measured variables have high communality. However, common factor analysis is recommended for EFA. First, researchers should evaluate the sample size and check for sampling adequacy before conducting factor analysis. If these conditions are not satisfied, then the next steps cannot be followed. Sample size must be at least 100 with communality above 0.5 and a minimum subject to item ratio of at least 5:1, with a minimum of five items in EFA. Next, Bartlett's sphericity test and the Kaiser-Mayer-Olkin (KMO) measure should be assessed for sampling adequacy. The chi-square value for Bartlett's test should be significant. In addition, a KMO of more than 0.8 is recommended. The next step is to conduct a factor analysis. The analysis is composed of three stages. The first stage determines a rotation technique. Generally, ML or PAF will suggest to researchers the best results. Selection of one of the two techniques heavily hinges on data normality. ML requires normally distributed data; on the other hand, PAF does not. The second step is associated with determining the number of factors to retain in the EFA. The best way to determine the number of factors to retain is to apply three methods including eigenvalues greater than 1.0, the scree plot test, and the variance extracted. The last step is to select one of two rotation methods: orthogonal or oblique. If the research suggests some variables that are correlated to each other, then the oblique method should be selected for factor rotation because the method assumes all factors are correlated in the research. If not, the orthogonal method is possible for factor rotation. Conclusions - Recommendations are offered for the best factor analytic practice for empirical research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.