We propose a partial occlusion removal method for computational integral imaging reconstruction (CIIR) based on the usage of the exemplar based inpainting technique. The proposed method is an improved version of the original linear inpainting based CIIR (LI-CIIR), which uses the inpainting technique to fill in the data missing region. The LI-CIIR shows good results for images which contain objects with smooth surfaces. However, if the object has a textured surface, the result of the LI-CIIR deteriorates, since the linear inpainting cannot recover the textured data in the data missing region well. In this work, we utilize the exemplar based inpainting to fill in the textured data in the data missing region. We call the proposed method the neighboring elemental image exemplar based inpainting (NEI-exemplar inpainting) method, since it uses sources from neighboring elemental images to fill in the data missing region. Furthermore, we also propose an automatic occluding region extraction method based on the use of the mutual constraint using depth estimation (MC-DE) and the level set based bimodal segmentation. Experimental results show the validity of the proposed system.
본 논문은 손실값을 포함하는 불완전한 데이터를 처리하는 방법에 대해 논한다. 손실값을 최적으로 처리한다는 것은 학습 데이터가 가지고 있는 정보들에서 본래값과 가장 근사한 추정치를 구하고, 이 값으로 손실값을 대치하는 것이다. 이것을 실현하기 위한 방안으로 분류기가 정보를 분류하는 과정에서 완성되어가는 결정트리를 이용한다. 다시말해 이 결정트리는 전체 학습 데이터 중에서 손실값을 포함하지 않는 완전한 정보만을 C4.5 분류기에 입력하여 학습하는 과정에서 얻어진다. 이 결정트리의 노드들은 분류 변수의 정보를 가지는데, 루트에 가까운 상위 노드일수록 많은 정보를 포함하게 되고 말단 노드에서는 루트로부터의 경로를 통해 분류 영역을 형성하게 된다. 또한 각 영역에는 분류된 데이터 사건들의 평균이 기록된다. 손실값을 포함하는 사건들은 이러한 결정트리에 입력되어 각 노드의 정보에 따라 순회과정을 통해 사건과 가장 근접한 영역을 찾아가게 된다. 이 영역에 기록된 평균값을 손실값의 추정치로 간주하고, 보상 과정은 완성된다.
본 논문에서는 손실이 발생하는 상황에서 높은 인식률을 유지하기 위해서 손실 데이터 이론을 음성 인식기에 적용하였다 손실 데이터 이론은 일반적으로 이용되는 통계적 정합 방법인 은닉 마코프 모델 (HMM: hidden Markov model) 중 연속 Gaussian확률 밀도 함수를 이용하여 음성 특징들의 출력 확률을 나타내는 경우에 쉽게 적용할 수 있다는 장점을 갖고 있다. 손실 데이터 이론의 방법 중 계산량이 적고 인식기에 적용이 쉬운 주변화(marginalization)방법을 사용하였으며 특징 벡터의 특정 차수나 시간열의 손실 검출 방법은 음성 신호의 에너지와 주위 배경 잡음의 에너지의 차이가 임계치보다 작게 되는 부분을 찾는 주파수 차감 방법을 이용하였다. 본 논문에서 제안한 손실 영역의 신뢰도 평가는 분석 구간이 모음일 확률을 계산해서 비교적 잉여 정보가 많이 포함된 모음화된 구간의 손실만을 처리하도록 하였다. 제안한 방법을 사용하여 여러 잡음 환경에 대해서 기존의 손실 데이터 처리 방법만을 사용한 경우보다 452 단어의 화자독립 단어 인식 실험을 수행한 결과 오류율측면에서 평균적으로 약 12%의 성능 향상을 얻을 수 있었다.
This paper proposed a new method for estimating missing values in time series rainfall data. The proposed method integrated the two most widely used estimation methods, general linear model(GLM) and ordinary kriging(OK), by taking a weighted average of covariance matrices derived from each of the two methods. The proposed method was cross-validated using daily rainfall data at thirteen rain gauges in the Hyeong-san River basin. The goodness-of-fit of the proposed method was higher than those of GLM and OK, which can be attributed to the weighting algorithm that was designed to minimize errors caused by violations of assumptions of the two existing methods. This result suggests that the proposed method is more accurate in missing values in time series rainfall data, especially in a region where the assumptions of existing methods are not met, i.e., rainfall varies by season and topography is heterogeneous.
In this study a method for filling in missing data of river water temperature using a pre-constructed mathematical relationship between air and water temperatures is presented. A regression between water temperatures at individual stations and ambient air temperatures at nearby weather stations can provide a practical method for representing missing water temperature data for an entire region. Air and water temperature data that were collected from two test sites (one coastal and, one inland) were individually fitted to a nonlinear regression model. To consider seasonal hysteresis effects, separate functions were fitted to the data in the rising and falling limbs. A single-criterion, multi-parameter optimization technique was used to determine the optimal parameter sets. This method minimizes the differences between the time series of the measured and estimated data. The constructed air-water temperature relationship was subsequently applied to represent missing water temperature data. It was found that the RMSEs(MBEs) were in the range of $1.843-1.976^{\circ}C(-0.329-0.201^{\circ}C)$ and the coefficient of determination were in the range of 0.92-0.96. The results demonstrate that the predicted water temperatures using the regression equations were reasonably accurate.
Communications for Statistical Applications and Methods
/
제17권2호
/
pp.263-273
/
2010
시계열의 결측값은 미지의 모수 또는 확률변수로 취급할 수 있으며 이에 따른 최대가능도방법과 확률변수방법에 의해 결측치를 추정할수 있으며 또한 주어진 자료 하에서 미지의 값에 대한 조건부기대치로 예측할수 있다. 이 연구의 주된 목적은 불완전한 자료에 대해 기존에는 ARMA모형만을 고려하였는데 이를 확장하여 공간시계열모형인 STAR모형에 적용하여 두 가지 추정방법을 이용해 결측값의 추정 정밀도를 비교하는데 있다. 사례분석을 위해 한국질병관리본부에서 전산보고 하고 있는 전염병 자료 중에서 2001~2009년 동안의 월별 Mumps 자료를 이용하여 두 가지 추정방법의 추정 정밀도와 예측정확도를 비교하였다.
스마트폰에 탑재된 다양한 종류의 센서들을 활용하여 사용자의 상태나 사회활동 및 주변 환경을 모니터링하는 스마트폰 센싱 시스템에서 특정 지역의 데이터가 손실되는 문제는 피할 수 없다. 다수의 사용자를 대상으로 사전에 정의해 놓은 조건이 만족할 때 센서로부터 측정된 값을 서버로 전송하는 기회기반 센싱 기법에서는 이러한 데이터 손실 문제가 더 심화된다. 본 논문에서는 수집된 데이터의 품질 저하 문제를 해결하기 위해 스마트폰 센싱의 특성을 고려한 손실 데이터 추정 모델을 제안한다. 제안된 추정 모델에서는 데이터의 시공간적 상관관계를 고려할 뿐만 아니라 신뢰도가 높은 데이터를 제공하는 참여자의 우선순위를 높임으로써 향상된 추정 값을 도출하도록 설계하였다. 또한 실험결과를 통해 본 논문에서 제안한 기법이 기존의 기법들에 비해 높은 신뢰도를 보이는 것을 알 수 있었다.
Communications for Statistical Applications and Methods
/
제16권4호
/
pp.723-730
/
2009
시계열의 결측값은 미지의 모수로 취급될 수 있으며 최대우도방법 또는 확률변수방법에 의해 추정할 수 있으며 또한 주어진 자료 하에서 미지의 값에 대한 조건부기대치로 예측할 수 있다. 이 연구의 주된 목적은 불완전한 자료에 대해 ARMA 모형을 적용하여 두 가지 추정방법인 최대우도추정방법과 확률변수방법을 이용해 결측값을 대체하는 방법을 비교하는데 있다. 사례분석을 위해 한국질병관리본부에서 전산보고 하고 있는 전염병 자료 중에서 2001${\sim}$2006년 동안의 월별 Mumps 자료를 이용하여 앞의 두 가지 추정방법을 예측오차제곱합(SSF)을 구하여 비교한다.
This paper presents a reverse engineering method for compound surfaces using vision system. A CNC machining center is used as a measuring station, which is equipped with slit beam generator and vision probe. Since obtained data using slit beam or laser scanner may have much data loss along the edge of compound surfaces, an algorithm is presented in this study to recover missing geometric data at such region. First, b-spline interpolation is applied to extract edge information of the surface, and as a next step, b-spline approximation is applied to recover the missing geometric data. Finally, b-spline skinning method is applied to regenerate the surface information. Appropriate simulation and experimental works are preformed to very the effectiveness of the proposed methods.
선거여론조사 자료의 경우 무응답이 흔히 관측되며, 이와 같이 무응답이 존재하는 범주형 자료는 불완전 분할표로 표현된다. 불완전 분할표로 표현된 선거여론조사 자료에서 후보자 지지율을 추정하는 경우, 지지율은 무응답이 어떤 메카니즘을 따르는가에 따라 다르게 추정되며, 따라서 자료가 어떠한 무응답 메카니즘을 따르는지에 대한 판별이 분석에 선행되어야 한다. 그러나 최근 연구에 따르면, 관측된 자료를 이용해서는 무응답 메카니즘을 판별할 수 없음이 밝혀졌다. 이러한 문제를 해결하기 위해 다양한 무응답 메카니즘을 반영할 수 있는 민감도 분석이 제안되었다. 그러나 기존에 제안된 민감도 분석의 경우, 이원 분할표에서 각 변수의 범주 수가 두 개인 경우만을 대상으로 한다. 우리나라 선거여론조사에서 고려되는 요인이 지역, 성, 연령 등임을 감안할 때, 기존 방법론으로 민감도 분석을 시행하기에는 한계점이 존재한다. 이에 따라 본 논문에서는 기존의 민감도 분석을 다차원 불완전 분할표에 적용할 수 있도록 확장하고, 이를 우리나라 19대 대선 여론조사 자료에 적용하였다. 분석 결과, 민감도 분석의 구간이 실제 지지율을 포함하고 있을 뿐 아니라, 다양한 무응답 메카니즘의 결과를 포괄하고 있으며, 실제 지지율과 가장 가까운 예측치의 경우 후보자에 대한 지지가 무응답의 발생에 영향을 미침을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.