• Title/Summary/Keyword: Data mining tool

Search Result 220, Processing Time 0.032 seconds

Implementing Linear Models in Genetic Programming to Utilize Accumulated Data in Shipbuilding (조선분야의 축적된 데이터 활용을 위한 유전적프로그래밍에서의 선형(Linear) 모델 개발)

  • Lee, Kyung-Ho;Yeun, Yun-Seog;Yang, Young-Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.534-541
    • /
    • 2005
  • Until now, Korean shipyards have accumulated a great amount of data. But they do not have appropriate tools to utilize the data in practical works. Engineering data contains experts' experience and know-how in its own. It is very useful to extract knowledge or information from the accumulated existing data by using data mining technique This paper treats an evolutionary computation based on genetic programming (GP), which can be one of the components to realize data mining. The paper deals with linear models of GP for the regression or approximation problem when given learning samples are not sufficient. The linear model, which is a function of unknown parameters, is built through extracting all possible base functions from the standard GP tree by utilizing the symbolic processing algorithm. In addition to a standard linear model consisting of mathematic functions, one variant form of a linear model, which can be built using low order Taylor series and can be converted into the standard form of a polynomial, is considered in this paper. The suggested model can be utilized as a designing tool to predict design parameters with small accumulated data.

Internet of Things-Based Command Center to Improve Emergency Response in Underground Mines

  • Jha, Ankit;Verburg, Alex;Tukkaraja, Purushotham
    • Safety and Health at Work
    • /
    • v.13 no.1
    • /
    • pp.40-50
    • /
    • 2022
  • Background: Underground mines have several hazards that could lead to serious consequences if they come into effect. Acquiring, evaluating, and using the real-time data from the atmospheric monitoring system and miner's positional information is crucial in deciding the best course of action. Methods: A graphical user interface-based software is developed that uses an AutoCAD-based mine map, real-time atmospheric monitoring system, and miners' positional information to guide on the shortest route to mine exit and other locations within the mine, including the refuge chamber. Several algorithms are implemented to enhance the visualization of the program and guide the miners through the shortest routes. The information relayed by the sensors and communicated by other personnel are collected, evaluated, and used by the program in proposing the best course of action. Results: The program was evaluated using two case studies involving rescue relating to elevated carbon monoxide levels and increased temperature simulating fire scenarios. The program proposed the shortest path from the miner's current location to the exit of the mine, nearest refuge chamber, and the phone location. The real-time sensor information relayed by all the sensors was collected in a comma-separated value file. Conclusion: This program presents an important tool that aggregates information relayed by sensors to propose the best rescue strategy. The visualization capability of the program allows the operator to observe all the information on a screen and monitor the rescue in real time. This program permits the incorporation of additional sensors and algorithms to further customize the tool.

Establishment of ITS Policy Issues Investigation Method in the Road Section applied Textmining (텍스트마이닝을 활용한 도로분야 ITS 정책이슈 탐색기법 정립)

  • Oh, Chang-Seok;Lee, Yong-taeck;Ko, Minsu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.10-23
    • /
    • 2016
  • With requiring circumspections using big data, this study attempts to develop and apply the search method for audit issues relating to the ITS policy or program. For the foregoing, the auditing process of the board of audit and inspection was converged with the theoretical frame of boundary analysis proposed by William Dunn as an analysis tool for audit issues. Moreover, we apply the text mining technique in order to computerize the analysis tool, which is similar to the boundary analysis in the concept of approaching meta-problems. For the text mining analysis, specific model we applied the antisymmetry-symmetry compound lexeme-based LDA model based on the Latent Dirichlet Allocation(LDA) methodologies proposed by David Blei. The several prime issues were founded through a case analysis as follows: lack of collection of traffic information by the urban traffic information system, which is operated by the National Police Agency, the overlapping problems between the Ministry of Land, Infrastructure and Transport and the Advanced Traffic Management System and fabrication of the mileage on digital tachograph.

Insights Discovery through Hidden Sentiment in Big Data: Evidence from Saudi Arabia's Financial Sector

  • PARK, Young-Eun;JAVED, Yasir
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.6
    • /
    • pp.457-464
    • /
    • 2020
  • This study aims to recognize customers' real sentiment and then discover the data-driven insights for strategic decision-making in the financial sector of Saudi Arabia. The data was collected from the social media (Facebook and Twitter) from start till October 2018 in financial companies (NCB, Al Rajhi, and Bupa) selected in the Kingdom of Saudi Arabia according to criteria. Then, it was analyzed using a sentiment analysis, one of data mining techniques. All three companies have similar likes and followers as they serve customers as B2B and B2C companies. In addition, for Al Rajhi no negative sentiment was detected in English posts, while it can be seen that Internet penetration of both banks are higher than BUPA, rarely mentioned in few hours. This study helps to predict the overall popularity as well as the perception or real mood of people by identifying the positive and negative feelings or emotions behind customers' social media posts or messages. This research presents meaningful insights in data-driven approaches using a specific data mining technique as a tool for corporate decision-making and forecasting. Understanding what the key issues are from customers' perspective, it becomes possible to develop a better data-based global strategies to create a sustainable competitive advantage.

Analysis and Prediction of Energy Consumption Using Supervised Machine Learning Techniques: A Study of Libyan Electricity Company Data

  • Ashraf Mohammed Abusida;Aybaba Hancerliogullari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.10-16
    • /
    • 2023
  • The ever-increasing amount of data generated by various industries and systems has led to the development of data mining techniques as a means to extract valuable insights and knowledge from such data. The electrical energy industry is no exception, with the large amounts of data generated by SCADA systems. This study focuses on the analysis of historical data recorded in the SCADA database of the Libyan Electricity Company. The database, spanned from January 1st, 2013, to December 31st, 2022, contains records of daily date and hour, energy production, temperature, humidity, wind speed, and energy consumption levels. The data was pre-processed and analyzed using the WEKA tool and the Apriori algorithm, a supervised machine learning technique. The aim of the study was to extract association rules that would assist decision-makers in making informed decisions with greater efficiency and reduced costs. The results obtained from the study were evaluated in terms of accuracy and production time, and the conclusion of the study shows that the results are promising and encouraging for future use in the Libyan Electricity Company. The study highlights the importance of data mining and the benefits of utilizing machine learning technology in decision-making processes.

Comparison of data mining algorithms for sex determination based on mastoid process measurements using cone-beam computed tomography

  • Farhadian, Maryam;Salemi, Fatemeh;Shokri, Abbas;Safi, Yaser;Rahimpanah, Shahin
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.323-330
    • /
    • 2020
  • Purpose: The mastoid region is ideal for studying sexual dimorphism due to its anatomical position at the base of the skull. This study aimed to determine sex in the Iranian population based on measurements of the mastoid process using different data mining algorithms. Materials and Methods: This retrospective study was conducted on 190 3-dimensional cone-beam computed tomographic (CBCT) images of 105 women and 85 men between the ages of 18 and 70 years. On each CBCT scan, the following 9 landmarks were measured: the distance between the porion and the mastoidale; the mastoid length, height, and width; the distance between the mastoidale and the mastoid incision; the intermastoid distance (IMD); the distance between the lowest point of the mastoid triangle and the most prominent convex surface of the mastoid (MF); the distance between the most prominent convex mastoid point (IMSLD); and the intersecting angle drawn from the most prominent right and left mastoid point (MMCA). Several predictive models were constructed and their accuracy was compared using cross-validation. Results: The results of the t-test revealed a statistically significant difference between the sexes in all variables except MF and MMCA. The random forest model, with an accuracy of 97.0%, had the best performance in predicting sex. The IMSLD and IMD made the largest contributions to predicting sex, while the MMCA variable had the least significant role. Conclusion: These results show the possibility of developing an accurate tool using data mining algorithms for sex determination in the forensic framework.

Optimization Methodology Integrated Data Mining and Statistical Method (데이터 마이닝과 통계적 기법을 통합한 최적화 기법)

  • Song, Suh-Ill;Shin, Sang-Mun;Jung, Hey-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.4
    • /
    • pp.33-39
    • /
    • 2006
  • These days manufacture technology and manufacture environment are changing rapidly. By development of computer and enlargement of technique, most of manufacture field are computerized. In order to win international competition, it is important for companies how fast get the useful information from vast data. Statistical process control(SPC) techniques have been used as a problem solution tool at manufacturing process until present. However, these statistical methods are not applied more extensively because it has much restrictions in realistic problems. These statistical techniques have lots of problems when much data and factors are analyzed. In this paper, we proposed more practical and efficient a new statistical design technique which integrated data mining (DM) and statistical methods as alternative of problems. First step is selecting significant factor using DM feature selection algorithm from data of manufacturing process including many factors. Second step is finding optimum of process after estimating response function through response surface methodology(RSM) that is a statistical techniques

Optimization-Based Pattern Generation for LAD (최적화에 기반을 둔 LAD의 패턴 생성 기법)

  • Jang, In-Yong;Ryoo, Hong-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.11-18
    • /
    • 2006
  • The logical analysis of data(LAD) is a Boolean-logic based data mining tool. A critical step in analyzing data by LAD is the pattern generation stage where useful knowledge and hidden structural information in data is discovered in the form of patterns. A conventional method for pattern generation in LAD is based on term enumeration that renders the generation of higher degree patterns practically impossible. In this paper, we present a novel optimization-based pattern generation methodology and propose two mathematical programming models, a mixed 0-1 integer and linear programming (MILP) formulation and a well-studied set covering problem (SCP) formulation for the generation of optimal and heuristic patterns, respectively. With benchmark datasets, we demonstrate the effectiveness of our models by automatically generating with ease patterns of high complexity that cannot be generated with the conventional approach.

  • PDF

Analysis of trends in mathematics education research using text mining (토픽 모델링 분석을 통한 수학교육 연구 주제 분석)

  • Jin, Mireu;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.275-294
    • /
    • 2019
  • In order to understand the recent trends in mathematics education research papers, data mining method was applied to analyze journals of the mathematics education posterior to the year of 2016. Text mining method is useful in the sense that it utilizes statistical approach to understand the linkages and influencing relationship between concepts and deriving the meaning that data shows by visualizing the process. Therefore, this research analyzed the key words largely mentioned in the recent mathematics education journals. Also the correlation between the subjects of mathematics education was deduced by using topic modeling. By using the trend analysis tool it is possible to understand the vital point which researchers consider it as important in recent mathematics education area and at the same time we tried to use it as a fundamental data to decide the upcoming research topic that is worth noticing.

A Study on the Analysis of Comparison of Churn Prediction Models in Mobile Telecommunication Services (이동통신서비스 해지고객 예측모형의 비교 분석에 관한 연구)

  • Kim, Choong-Nyoung;Chang, Nam-Sik;Kim, Jun-Woo
    • Asia pacific journal of information systems
    • /
    • v.12 no.1
    • /
    • pp.139-158
    • /
    • 2002
  • As the telecommunication market becomes mature in Korea, severe competition has already begun on the market. While service providers struggled for the last couple of years to acquire as many new customers as possible, nowadays they are making more efforts on retaining the current customers. The churn management by analyzing customers' demographic and transactional data becomes one of the key customer retention strategies which most companies pursue. However, the customer data analysis has still remained at the basic level in the industry, even though it has considerable potential as a tool for understanding customer behavior. This paper develops several churn prediction models using data mining techniques such as logistic regression, decision trees, and neural networks. For model-building, real data were used which were collected from one of the major telecommunication companies in Korea. This paper explores various ways of comparing model performance, while the hit ratio was mainly focused in the previous research. The comparison criteria used in this study include gain ratio, Kolmogorov-Smirnov statistics, distribution of the predicted values, and explanation ability. This paper also suggest some guidance for model selection in applying data mining techniques.