• Title/Summary/Keyword: Data mining tool

Search Result 220, Processing Time 0.027 seconds

A Study on Big Data-Based Analysis of Risk Factors for Depression in Adolescents

  • Chun-Ok Jang
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.449-455
    • /
    • 2023
  • The purpose of this study is to explore adolescent depression, increase understanding of social problems, and develop prevention and intervention strategies. As a research method, social big data was used to collect information related to 'youth depression', and related factors were identified through data mining and analysis of related rules. We used 'Sometrend Biz Tool' to collect and clean data from the web and then analyzed data in various languages. The study found that online articles about depression decreased during the school holidays (January to March), then increased from March to the end of June, and then decreased again from July. Therefore, it is important to establish a government-wide depression management monitoring system that can detect risk signs of adolescent depression in real time. In addition, regular stress relief and mental health education are needed during the semester, and measures must be prepared to deal with at-risk youth who share their depressed feelings in cyberspace. Results from these studies can be expected to provide important information in investigating and preventing youth depression and to contribute to policy development and intervention.

An Insight Study on Keyword of IoT Utilizing Big Data Analysis (빅데이터 분석을 활용한 사물인터넷 키워드에 관한 조망)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.146-147
    • /
    • 2017
  • Big data analysis is a technique for effectively analyzing unstructured data such as the Internet, social network services, web documents generated in the mobile environment, e-mail, and social data, as well as well formed structured data in a database. The most big data analysis techniques are data mining, machine learning, natural language processing, and pattern recognition, which were used in existing statistics and computer science. Global research institutes have identified analysis of big data as the most noteworthy new technology since 2011. Therefore, companies in most industries are making efforts to create new value through the application of big data. In this study, we analyzed using the Social Matrics which a big data analysis tool of Daum communications. We analyzed public perceptions of "Internet of things" keyword, one month as of october 8, 2017. The results of the big data analysis are as follows. First, the 1st related search keyword of the keyword of the "Internet of things" has been found to be technology (995). This study suggests theoretical implications based on the results.

  • PDF

Current Status of Bioinformatics on Bio-databases and it Tools (바이오데이터베이스와 도구를 활용한 바이오인포매틱스의 동향)

  • Im, Dal-Hyuk;Jeon, Sue-Kyoung;Park, Wan-Kyu;Lee, Young-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.1
    • /
    • pp.73-79
    • /
    • 2004
  • The union of information-technology and biology presents great possibilities to both applications of bio-information and development of science and technology. Also, meaningful analysis of bio-information brings about a new innovation in the field of bio-market with the advent and growth of bioinformatics. Hence, bioinformatics is the most import aspect for establishing a science-technology-oriented society in the $21^{st}$ century. This article provides trends in current state of bioinformatics. Technological development of bioinformatics for the rapid growth of bio-industry means that using bioinformatics, a biologist can process and store enormous amount of data such as current Human Genome Project and future data in the field of biology. We have manly looked at the tends of bio-information, databases and mining tools that are generally used, and strategies and directions for the future.

Identifying Hazard of Fire Accidents in Domestic Manufacturing Industry Using Data Analytics (국내 제조업 화재사고 데이터 분석을 통한 복합 유해·위험요인 확인)

  • Kyung Min Kim;Yongyoon Suh;Jong Bin Lee;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.23-31
    • /
    • 2023
  • Revising the Occupational Safety and Health Act led to enacting and revising related laws and systems, such as placing fire observers in hot workplaces. However, the operating standards in such cases are still ambiguous. Although fire accidents occur through multiple and multi-step factors, the hazards of fire accidents have been identified in this study as individual rather than interrelated factors. The aim has been to identify multiple factors of accidents, outlining fire and explosion accidents that recently occurred in the domestic manufacturing industry. First, major keywords were extracted through text mining. Then representative accident types were derived by combining the main keywords through the co-word network analysis to identify the hazards and their relationships. The representative fire accidents were identified as six types, and their major hazards were then addressed for improving safety measures using the identification of hazards in the "Risk Assessment" tool. It is found that various safety measures, such as professional fire observers' training and clear placement standards, are needed. This study will provide useful basic data for revising practical laws and guidelines for fire accident prevention, system supplementation, safety policy establishment, and future related research.

A Study on the Development of Data Mining Tool named XM-Tool/Miner (데이터 마이닝 도구 XM-Tool/Miner 개발에 관한 연구)

  • Rhee, Nahm-Guhn;Lee, Chang-Ho;Kim, Ju-Young;Lee, Byung-Yup;Lee, Seung-Hee
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.23-26
    • /
    • 2000
  • 정보기술이 발달하면서 자료의 흔적들이 체계화된 데이터베이스에 저장이 되고, 더불어 데이터베이스의 규모는 점점 커지고 있다. 데이터 마이닝은 이런 방대한 자료의 분석을 통해, 그 속에 숨어있는 의미를 찾는 과정이라고 볼 수 있다. 본 논문에서는 대용량 데이터베이스에 존재하는 여러 유용한 지식을 추출하는 방법으로서 데이터 마이닝을 분류화, 클러스터링, 요약규칙, 시간에 따른 분석 및 예측등으로 분류하여 요약, 제시하였고, 이렇게 추출된 패턴, 정보, 지식들의 유용성을 측정하는 지표를 정리하였다. 개발된 XM-Tool/Miner은 문제 중심적 마이닝 도구를 목표로 하였으며, 대표적인 마이닝 알고리즘을 적용하였고, 또한 사용의 편이성에 초점을 맞추었다. 더 나아가 데이터 마이닝 기법뿐만 아니라 데이터의 샘플링과 성능향상을 통하여 방대한 데이터로부터 다양한 지식탐사가 가능해지고, 발견된 규칙 또는 지식의 유용성 측정을 통하여 업무 분야의 특성에 따라 효과적으로 반영되며 의사결정 및 CRM 마케팅, 동향분석 및 예측 등에 유용한 정보를 추출하는 도구로 사용할 수 있을 것이다.

  • PDF

A New Study on Vibration Data Acquisition and Intelligent Fault Diagnostic System for Aero-engine

  • Ding, Yongshan;Jiang, Dongxiang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.16-21
    • /
    • 2008
  • Aero-engine, as one kind of rotating machinery with complex structure and high rotating speed, has complicated vibration faults. Therefore, condition monitoring and fault diagnosis system is very important for airplane security. In this paper, a vibration data acquisition and intelligent fault diagnosis system is introduced. First, the vibration data acquisition part is described in detail. This part consists of hardware acquisition modules and software analysis modules which can realize real-time data acquisition and analysis, off-line data analysis, trend analysis, fault simulation and graphical result display. The acquisition vibration data are prepared for the following intelligent fault diagnosis. Secondly, two advanced artificial intelligent(AI) methods, mapping-based and rule-based, are discussed. One is artificial neural network(ANN) which is an ideal tool for aero-engine fault diagnosis and has strong ability to learn complex nonlinear functions. The other is data mining, another AI method, has advantages of discovering knowledge from massive data and automatically extracting diagnostic rules. Thirdly, lots of historical data are used for training the ANN and extracting rules by data mining. Then, real-time data are input into the trained ANN for mapping-based fault diagnosis. At the same time, extracted rules are revised by expert experience and used for rule-based fault diagnosis. From the results of the experiments, the conclusion is obvious that both the two AI methods are effective on aero-engine vibration fault diagnosis, while each of them has its individual quality. The whole system can be developed in local vibration monitoring and real-time fault diagnosis for aero-engine.

  • PDF

Churn Analysis for the First Successful Candidates in the Entrance Examination for K University

  • Kim, Kyu-Il;Kim, Seung-Han;Kim, Eun-Young;Kim, Hyun;Yang, Jae-Wan;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we focus on churn analysis for the first successful candidates in the entrance examination on 2006 year using Clementine, data mining tool. The goal of this study is to apply decision tree including C5.0 and CART algorithms, neural network and logistic regression techniques to predict a successful candidate churn. And we analyze the churning and nochurning successful candidates and why the successful candidates churn and which successful candidates are most likely to churn in the future using data from entrance examination data of K university on 2006 year.

  • PDF

STATISTICAL MODELLING USING DATA MINING TOOLS IN MERGERS AND ACQUISITION WITH REGARDS TO MANUFACTURE & SERVICE SECTOR

  • KALAIVANI, S.;SIVAKUMAR, K.;VIJAYARANGAM, J.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.563-575
    • /
    • 2022
  • Many organizations seek statistical modelling facilitated by data analytics technologies for determining the prediction models associated with M&A (Merger and Acquisition). By combining these data analytics tool alongside with data collection approaches aids organizations towards M&A decision making, followed by achieving profitable insights as well. It promotes for better visibility, overall improvements and effective negotiation strategies for post-M&A integration. This paper explores on the impact of pre and post integration of M&A in a standard organizational setting via devising a suitable statistical model via employing techniques such as Naïve Bayes, K-nearest neighbour (KNN), and Decision Tree & Support Vector Machine (SVM).

A FCA-based Classification Approach for Analysis of Interval Data (구간데이터분석을 위한 형식개념분석기반의 분류)

  • Hwang, Suk-Hyung;Kim, Eung-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.19-30
    • /
    • 2012
  • Based on the internet-based infrastructures such as various information devices, social network systems and cloud computing environments, distributed and sharable data are growing explosively. Recently, as a data analysis and mining technique for extracting, analyzing and classifying the inherent and useful knowledge and information, Formal Concept Analysis on binary or many-valued data has been successfully applied in many diverse fields. However, in formal concept analysis, there has been little research conducted on analyzing interval data whose attributes have some interval values. In this paper, we propose a new approach for classification of interval data based on the formal concept analysis. We present the development of a supporting tool(iFCA) that provides the proposed approach for the binarization of interval data table, concept extraction and construction of concept hierarchies. Finally, with some experiments over real-world data sets, we demonstrate that our approach provides some useful and effective ways for analyzing and mining interval data.

A Study on Fault Diagnosis Algorithm for Rotary Machine using Data Mining Method and Empirical Mode Decomposition (데이터 마이닝 기법 및 경험적 모드 분해법을 이용한 회전체 이상 진단 알고리즘 개발에 관한 연구)

  • Yun, Sang-hwan;Park, Byeong-hui;Lee, Changwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.23-29
    • /
    • 2016
  • Rotary machine is major equipment in industry. The rotary machine is applied for a machine tool, ship, vehicle, power plant, and so on. But a spindle fault increase product's expense and decrease quality of a workpiece in machine tool. A turbine in power plant is directly connected to human safety. National crisis could be happened by stopping of rotary machine in nuclear plant. Therefore, it is very important to know rotary machine condition in industry field. This study mentioned fault diagnosis algorithm with statistical parameter and empirical mode decomposition. Vibration locations can be found by analyze kurtosis of data from triaxial axis. Support vector of data determine threshold using hyperplane with fault location. Empirical mode decomposition is used to find fault caused by intrinsic mode. This paper suggested algorithm to find direction and causes from generated fault.