• Title/Summary/Keyword: Data loss protection

Search Result 133, Processing Time 0.018 seconds

Estimation of irrigation return flow from paddy fields on agricultural watersheds (농업유역의 논 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;An, Hyun-Uk;Kim, Jonggun;Shin, Yongchul;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Irrigation water supplied to the paddy field is consumed in the amount of evapotranspiration, underground infiltration, and natural and artificial drainage from the paddy field. Irrigation return flow is defined as the excess of irrigation water that is not consumed by evapotranspiration and crop, and which returns to an aquifer by infiltration or drainage. The research on estimating the return flow play an important part in water circulation management of agricultural watershed. However, the return flow rate calculations are needs because the result of calculating return flow is different depending on irrigation channel water loss, analysis methods, and local characteristics. In this study, the irrigation return flow rate of agricultural watershed was estimated using the monitoring and SWMM (Storm Water Management Model) modeling from 2017 to 2020 for the Heungeop reservoir located in Wonju, Gangwon-do. SWMM modeling was performed by weather data and observation data, water of supply and drainage were estimated as the result of SWMM model analysis. The applicability of the SWMM model was verified using RMSE and R-square values. The result of analysis from 2017 to 2020, the average annual quick return flow rate was 53.1%. Based on these results, the analysis of water circulation characteristics can perform, it can be provided as basic data for integrated water management.

A study of Brachytherapy for Intraocular Tumor (안구내 악성종양에 대한 저준위 방사선요법에 관한 연구)

  • Ji, Gwang-Su;Yu, Dae-Heon;Lee, Seong-Gu;Kim, Jae-Hyu;Ji, Yeong-Hun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.19-27
    • /
    • 1996
  • I. Project Title A Study of Brachytherapy for intraocular tumor II. Objective and Importance of the project The eye enucleation or external-beam radiation therapy that has been commonly used for the treatment of intraocular tumor have demerits of visual loss and in deficiency of effective tumor dose. Recently, brachytherapy using the plaques containing radioisotope-now treatment method that decrease the demerits of the above mentioned treatment methods and increase the treatment effect-is introduced and performed in the countries, Our purpose of this research is to design suitable shape of plaque for the ophthalmic brachytherapy, and to measure absorbed doses of Ir-192 ophthalmic plaque and thereby calculate the exact radiation dose of tumor and it's adjacent normal tissue. III. Scope and Contents of the project In order to brachytherapy for intraocular tumor, 1. to determine the eye model and selected suitable radioisotope 2. to design the suitable shape of plaque 3. to measure transmission factor and dose distribution for custom made plaques 4. to compare with the these data and results of computer dose calculation models IV. Results and Proposal for Applications The result were as followed. 1. Eye model was determined as a 25mm diameter sphere, Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15mm, 17mm and 20mm in diameter, and 1.5mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within ${\pm}10\%$ and distance deviations are within 0.4mm Maximum error is $-11.3\%$ and 0.8mm, respectively. As a result of it, we can treat the intraocular tumor more effectively by using custom made gold plaque and Ir-192 seeds.

  • PDF

Troposhperic Ozone Pollutions in Korea during 1998-2002 Using Two Ozone Indices for Vegetation Protection (식생보호를 위한 한계농도 누적 지표로 본 1998-2002년도의 우리나라 대기권 오존 오염)

  • 윤성철;김보선
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.1
    • /
    • pp.38-48
    • /
    • 2004
  • Tropospheric ozone data in Korea for 1998-2002 were analyzed to assess the impact on vegetation. SUM06(sum of hourly concentrations at or above 0.06 ppm) and AOT40(accumulated exposure over a threshold of 40 ppb), widely used as ozone indices in the U.S. and Europe, were calculated based on hourly ozone concentration in 612 areas during 1998-2002 in Korea. SUM06 of the highest 30 areas were 5-12 ppm/hr which were almost the same levels of the U.S. average, and a crop loss of 5% would be expected. Ozone pollution in Seoul during 1998-2002 had decreased compared to that for 1990-97 except in the Northern area; however, ozone pollution in Kyunggi during 1998-2002 had been increased twice compare to the previous 5 years. Korea was divided into four regions: Seoul Metropolitan area, Jungbu, Honam, and Youngnam. Ozone pollution in the Seoul Metropolitan area was much higher during 1998-2000 than the other areas, but ozone pollution during 2001-2002 was almost the same in all four regions. Chunnam-Kwangyang na Kyungbuk-Gumi, famous industrial complexes in southern Korea, were significant ozone pollution areas. However, other industrial complexes, such as Incheon, Ulsan, and Kyunggi-Sihwa, were not polluted compared to their neighbors. Comparing all ozone indices, SUM06(yr), SUM06(3mon), AOT40(yr), AOT40(3mon), number of hours exceeding 100 ppb, 95 percentile, 99 percentile, and maximum concentration, it was determined reasonable to use SUM06(3mon), AOT40(3mon) and number of hours exceeding 100 ppb for evaluation of the chronic impact of ozone on vegetation.