• Title/Summary/Keyword: Data gathering delay

Search Result 25, Processing Time 0.021 seconds

A Lifetime-Preserving and Delay-Constrained Data Gathering Tree for Unreliable Sensor Networks

  • Li, Yanjun;Shen, Yueyun;Chi, Kaikai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3219-3236
    • /
    • 2012
  • A tree routing structure is often adopted for many-to-one data gathering and aggregation in sensor networks. For real-time scenarios, considering lossy wireless links, it is an important issue how to construct a maximum-lifetime data gathering tree with delay constraint. In this work, we study the problem of lifetime-preserving and delay-constrained tree construction in unreliable sensor networks. We prove that the problem is NP-complete. A greedy approximation algorithm is proposed. We use expected transmissions count (ETX) as the link quality indicator, as well as a measure of delay. Our algorithm starts from an arbitrary least ETX tree, and iteratively adjusts the hierarchy of the tree to reduce the load on bottleneck nodes by pruning and grafting its sub-tree. The complexity of the proposed algorithm is $O(N^4)$. Finally, extensive simulations are carried out to verify our approach. Simulation results show that our algorithm provides longer lifetime in various situations compared to existing data gathering schemes.

Multi-Collector Control for Workload Balancing in Wireless Sensor and Actuator Networks

  • Han, Yamin;Byun, Heejung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.3
    • /
    • pp.113-117
    • /
    • 2021
  • The data gathering delay and the network lifetime are important indicators to measure the service quality of wireless sensor and actuator networks (WSANs). This study proposes a dynamically cluster head (CH) selection strategy and automatic scheduling scheme of collectors for prolonging the network lifetime and shorting data gathering delay in WSAN. First the monitoring region is equally divided into several subregions and each subregion dynamically selects a sensor node as CH. These can balance the energy consumption of sensor node thereby prolonging the network lifetime. Then a task allocation method based on genetic algorithm is proposed to uniformly assign tasks to actuators. Finally the trajectory of each actuator is optimized by ant colony optimization algorithm. Simulations are conducted to evaluate the effectiveness of the proposed method and the results show that the method performs better to extend network lifetime while also reducing data delay.

Minimization of Packet Delay in a Mobile Data Collector (MDC)-based Data Gathering Network (MDC 기반 데이터 수집 네트워크에서의 패킷지연 최소화)

  • Dasgupta, Rumpa;Yoon, Seokhoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.89-96
    • /
    • 2016
  • In this paper, we study mobile data collector (MDC) based data-gathering schemes in wireless sensor networks. In Such networks, MDCs are used to collect data from the environment and transfer them to the sink. The majority of existing data-gathering schemes suffer from high data-gathering latency because they use only a single MDC. Although some schemes use multiple MDCs, they focus on maximizing network lifetime rather than minimizing packet delay. In order to address the limitations of existing schemes, this paper focuses on minimizing packet delay for given number of MDCs and minimizing the number of MDCs for a given delay bound of packets. To achieve the minimum packet delay and minimum number of MDCs, two optimization problems are formulated, and traveling distance and traveling time of MDCs are estimated. The interior-point algorithm is used to obtain the optimal solution for each optimization problem. Numerical results and analysis are presented to validate the proposed method.

A Data Gathering Scheme using Dynamic Branch of Mobile Sink in Wireless Sensor Networks (무선 센서망에서 이동 싱크의 동적 브랜치를 통한 데이터 수집 방안)

  • Lee, Kil-Hung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.92-97
    • /
    • 2012
  • This paper suggests a data gathering scheme using dynamic branch tree in wireless sensor networks. A mobile sink gathers data from each sensor node using a dynamic data gathering tree rooted at the mobile sink node. As the sink moves, a tree that has multiple branch is formed and changed dynamically as with the position of the sink node. A hop-based scope filter and a restricted flooding scheme of the tree are also suggested. Simulation results show that the proposed data gathering scheme has better results in data arrival rate, the end-to-end delay and energy saving characteristics compared with the previous scheme.

A GTS-based Sensor Data Gathering under a Powerful Beam Structure (파워 빔 구조에서 GTS 기반 센서 데이터 수집 방안)

  • Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • This paper proposes an architecture of a sensor network for gathering data under a powerful beam cluster tree architecture. This architecture is used when there is a need to gather data from sensor node where there is no sink node connected to an existing network, or it is required to get a series of data specific to an event or time. The transmit distance of the beam signal is longer than that of the usual sensor node. The nodes of the network make a tree network when receiving a beam message transmitting from the powerful root node. All sensor nodes in a sink tree network synchronize to the superframe and know exactly the sequence value of the current superframe. When there is data to send to the sink node, the sensor node sends data at the corresponding allocated channel. Data sending schemes under the guaranteed time slot are tested and the delay and jitter performance is explained.

Mobile Sink Data Gathering through Clustering (클러스터링을 통한 모바일 싱크 데이터 수집)

  • Park, Jang-Su;Ahn, Byoung-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.5
    • /
    • pp.79-85
    • /
    • 2009
  • A sink node and its neighbor nodes spend more energy than other nodes since a stationary sink node collects data from wireless sensor networks(WSNs). For larger WSNs, the unbalanced energy of nodes causes the operation of WSNs to stop rapidly. This paper proposes a data gathering method by adapting the mobile sink to prolong the life time of large WSNs. After partitioning a network into several clusters, a mobile sink visits each cluster and collects data from it. An efficient algorithm is proposed to improve the energy efficiency by delivering the message from the mobile sink to the cluster head as well as to reduce the data gathering delay, which is the disadvantage of the mobile sink. Also, The algorithm is analyzed for the energy consumption and the data gathering delay. The validity of the ananlysis result is confirmed by the simulation.

Cluster-based Delay-adaptive Sensor Scheduling for Energy-saving in Wireless Sensor Networks (센서네트워크에서 클러스터기반의 에너지 효율형 센서 스케쥴링 연구)

  • Choi, Wook;Lee, Yong;Chung, Yoo-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.47-59
    • /
    • 2009
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting latency may vary depending on the type of applications, thus requiring application-specific algorithm and protocol design paradigms which help us to maximize energy conservation and thus the network lifetime. In this paper, we propose a novel delay-adaptive sensor scheduling scheme for energy-saving data gathering which is based on a two phase clustering (TPC). The ultimate goal is to extend the network lifetime by providing sensors with high adaptability to the application-dependent and time-varying delay requirements. The TPC requests sensors to construct two types of links: direct and relay links. The direct links are used for control and forwarding time critical sensed data. On the other hand, the relay links are used only for data forwarding based on the user delay constraints, thus allowing the sensors to opportunistically use the most energy-saving links and forming a multi-hop path. Simulation results demonstrate that cluster-based delay-adaptive data gathering strategy (CD-DGS) saves a significant amount of energy for dense sensor networks by adapting to the user delay constraints.

Implementation and Performance Evaluation of Reporting Interval-adaptive Sensor Control Scheme for Energy Efficient Data Gathering (에너지 효율적 센서 데이터 수집을 위한 리포팅 허용 지연시간 적응형 센서 제어 기법 구현 및 성능평가)

  • Shon, Tae-Shik;Choi, Hyo-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.459-464
    • /
    • 2010
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting latency may vary depending on the type of applications, thus requiring application-specific algorithm and protocol design paradigms which help us to maximize energy conservation and thus the network lifetime. In this paper, we implement and evaluate a novel delay-adaptive sensor scheduling scheme for energy-saving data gathering which is based on a two phase clustering (TPC), in wireless sensor networks. The TPC is implemented on sensor Mote hardwares. With the help of TPC implemented, sensors selectively use direct links for control and forwarding time critical sensed data and relay links for data forwarding based on the user delay constraints given. Implementation study shows that TPC helps the sensors to increase a significant amount of energy while collecting sensed data from sensors in a real environment.

Efficient Packet Transmission Mechanism for Multi-hop Wireless Sensor Networks (멀티-홉 무선 센서 네트워크에서 효율적인 패킷 전송 메커니즘)

  • Jeon, Jun Heon;Kim, Seong Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.492-498
    • /
    • 2015
  • In general, data packets from sensor nodes are transferred to the sink node in a wireless sensor networks. So many data packets are gathered around the sink node, resulting in significant packet collision and delay. In this paper, we propose an efficient packet transmission mechanism for multi-hop wireless sensor networks. The proposed mechanism is composed of two modes. One mode works between sink node and 1-hop nodes from sink. In this mode, data packets are transmitted in predefined time slots to reduce collisions. The other mode works between other nodes except sink node. In this mode, duplicated packets from neighbor nodes can be detected and dropped using some control signals. Our numerical analysis and simulation results show that our mechanism outperforms X-MAC and RI-MAC in terms of energy consumption and transmission delay.