• Title/Summary/Keyword: Data gathering

Search Result 747, Processing Time 0.038 seconds

Design of Integrated Verification Process for Sending Data Gathering System (센싱 데이터 수집 시스템을 위한 통합검증 프로세스 설계)

  • Kim, Yu-Doo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.305-306
    • /
    • 2021
  • It has been designed very complex that gathering system for various sending data. Therefore it is very important that verification process of these functions. In this paper we design of integrated verification process for sensing data gathering system.

  • PDF

Secure Data Gathering Protocol over Wireless Sensor Network (무선센서네트워크에서 안전한 데이터 수집 프로토콜)

  • Choi, Hae-Won;Ryoo, Myung-Chun;Lee, Chae-Soo;Kim, Hyun-Sung
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.367-380
    • /
    • 2013
  • A secure data gathering in a Wireless Sensor Network(WSN) has given attention to one of security issues. In general, the process of secure data gathering causes difficulties: one process is exchanging the secured data and the other is constructing secured data path. The previous studies have been resolving the difficulties in terms of two problems: security and data gathering in WSNs. However, a WSN requires a protocol that has to guarantee a security of path between sensors and sink, or a cluster head. Thus how to gather data securely is an important issue. In this paper, we propose a secure data gathering protocol over WSNs, which consists of hierarchical key settlement and secure path construction, and aims at tackling two problems. The proposed protocol causes little overhead to sensor nodes for secured key settlement and path construction. This work provides security analysis focused on the key settlement protocol and evaluates network performance for the proposed data gathering protocol through simulation.

Processing-Node Status-based Message Scattering and Gathering for Multi-processor Systems on Chip

  • Park, Jongsu
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.279-284
    • /
    • 2019
  • This paper presents processing-node status-based message scattering and gathering algorithms for multi-processor systems on chip to reduce the communication time between processors. In the message-scattering part of the message-passing interface (MPI) scatter function, data transmissions are ordered according to the proposed linear algorithm, based on the processor status. The MPI hardware unit in the root processing node checks whether each processing node's status is 'free' or 'busy' when an MPI scatter message is received. Then, it first transfers the data to a 'free' processing node, thereby reducing the scattering completion time. In the message-gathering part of the MPI gather function, the data transmissions are ordered according to the proposed linear algorithm, and the gathering is performed. The root node receives data from the processing node that wants to transfer first, and reduces the completion time during the gathering. The experimental results show that the performance of the proposed algorithm increases at a greater rate as the number of processing nodes increases.

A Data Gathering Scheme using Dynamic Branch of Mobile Sink in Wireless Sensor Networks (무선 센서망에서 이동 싱크의 동적 브랜치를 통한 데이터 수집 방안)

  • Lee, Kil-Hung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.92-97
    • /
    • 2012
  • This paper suggests a data gathering scheme using dynamic branch tree in wireless sensor networks. A mobile sink gathers data from each sensor node using a dynamic data gathering tree rooted at the mobile sink node. As the sink moves, a tree that has multiple branch is formed and changed dynamically as with the position of the sink node. A hop-based scope filter and a restricted flooding scheme of the tree are also suggested. Simulation results show that the proposed data gathering scheme has better results in data arrival rate, the end-to-end delay and energy saving characteristics compared with the previous scheme.

Design of Web-based Platform for Gathering of Sending Data (센싱 데이터 수집을 위한 웹 기반의 플랫폼 설계)

  • Kim, Yu-Doo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.579-580
    • /
    • 2021
  • It is representative that utilize the platform embedded by each sensor for gathering data from sensor. However, various platforms have different implementations for different types of sensors, making it difficult to apply them at once. Therefore, in this paper, we propose a web-based data collection platform that can easily gathering and managing various sensing data on one platform.

  • PDF

A Lifetime-Preserving and Delay-Constrained Data Gathering Tree for Unreliable Sensor Networks

  • Li, Yanjun;Shen, Yueyun;Chi, Kaikai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3219-3236
    • /
    • 2012
  • A tree routing structure is often adopted for many-to-one data gathering and aggregation in sensor networks. For real-time scenarios, considering lossy wireless links, it is an important issue how to construct a maximum-lifetime data gathering tree with delay constraint. In this work, we study the problem of lifetime-preserving and delay-constrained tree construction in unreliable sensor networks. We prove that the problem is NP-complete. A greedy approximation algorithm is proposed. We use expected transmissions count (ETX) as the link quality indicator, as well as a measure of delay. Our algorithm starts from an arbitrary least ETX tree, and iteratively adjusts the hierarchy of the tree to reduce the load on bottleneck nodes by pruning and grafting its sub-tree. The complexity of the proposed algorithm is $O(N^4)$. Finally, extensive simulations are carried out to verify our approach. Simulation results show that our algorithm provides longer lifetime in various situations compared to existing data gathering schemes.

An implementation of stable transmission and security management system of massive acoustic data in unsecurity and low speed network area (비보호 저속망 환경에서의 고용량 음향데이터의 안정적 전송 및 관리 시스템 구현)

  • Sun, Doo-Young;Kim, Yong-Deak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.164-167
    • /
    • 2009
  • The amount of acoustic data gathered from the acoustic data gathering system is increased dramatically as the acoustic data gathering system become various and highly effective. It is needed to transmit this acoustic data to analysis environment for precise analysis. In this gathering/analysis system, it is also needed the stable transmitting as well as highly perfect security. In this paper, I would like to propose a transmitting and management system sending a massive gathering acoustic data in the unsecurity and low speed networking environment. The implemented system is to transmit the acoustic data safely in low speed networking environment and secure the acoustic data from various threats.

  • PDF

Efficient Message Scattering and Gathering Based on Processing Node Status (프로세서 노드 상황을 고려하는 효율적인 메시지 스캐터 및 개더 알고리즘)

  • Park, Jongsu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.637-640
    • /
    • 2022
  • To maximize performance in a high-performance multicore processor system. it is essential to enable effective data communication between processing cores. Data communication between processor nodes can be broadly classified into collective and point-to-point communications. Collective communication comprises scattering and gathering. This paper presents a efficient message scattering and gathering based on processing node status. In the proposed algorithms, the transmission order is changed according to the data size of the pre-existing communication, to reduce the waiting time required until the collective communications begin. From the simulation, the performances of the proposed message scattering and gathering algorithms were improved by approximately 71.41% and 69.84%.

A Time Tree Scheduling Scheme for Energy Efficiency and Collision Avoidance in Sensor Networks (센서 네트워크에서 에너지 효율과 충돌 회피를 위한 타임 트리 스케줄링)

  • Lee, Kil-Hung
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.7
    • /
    • pp.962-970
    • /
    • 2009
  • This paper presents a data gathering and scheduling scheme for wireless sensor networks. We use a data gathering tree for sending the data from the sensor node to the base station. For an energy efficient operation of the sensor networks in a distributed manner, a time tree is built in order to reduce the collision probability and to minimize the total energy required to send data to the base station. A time tree is a data gathering tree where the base station is the root and each sensor node is either a relaying or a leaf node of the tree. Each tree operates in a different time schedule with possible different activation rate. Through the simulation, we found that the proposed scheme that uses time trees shows better characteristics in energy and data arrival rate when compared with other schemes such as SMAC and DMAC.

  • PDF

A GTS-based Sensor Data Gathering under a Powerful Beam Structure (파워 빔 구조에서 GTS 기반 센서 데이터 수집 방안)

  • Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • This paper proposes an architecture of a sensor network for gathering data under a powerful beam cluster tree architecture. This architecture is used when there is a need to gather data from sensor node where there is no sink node connected to an existing network, or it is required to get a series of data specific to an event or time. The transmit distance of the beam signal is longer than that of the usual sensor node. The nodes of the network make a tree network when receiving a beam message transmitting from the powerful root node. All sensor nodes in a sink tree network synchronize to the superframe and know exactly the sequence value of the current superframe. When there is data to send to the sink node, the sensor node sends data at the corresponding allocated channel. Data sending schemes under the guaranteed time slot are tested and the delay and jitter performance is explained.