• Title/Summary/Keyword: Data forwarding protocol

Search Result 87, Processing Time 0.02 seconds

A Power-based Pipelined-forwarding MAC Protocol for Energy Harvesting Wireless Sensor Networks (에너지 하베스팅 무선 센서네트워크을 위한 전력기반 Pipelined-forwarding MAC프로토콜)

  • Shim, Kyuwook;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.98-101
    • /
    • 2019
  • In this paper, we propose the power-based pipelined-forwarding MAC protocol which can select relay nodes according to the residual power and energy harvesting rate in EH-WSN (energy-harvesting wireless sensor networks). The proposed MAC follows a pipelined-forwarding scheme in which nodes repeatedly sleep and wake up in an EH-WSN environment and data is continuously transmitted from a high-level node to a low-level node. The sleep interval is adaptively controlled so that nodes with low energy harvesting rate can be charged sufficiently, thereby minimizing the transmission delay and increasing the network lifetime. Simulation shows that the proposed MAC protocol improves the balance of residual power and network lifetime.

A Joint Wakeup Scheduling and MAC Protocol for Energy Efficient Data Forwarding in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 데이터 전송을 위한 스케줄링/ MAC 통합 프로토콜)

  • Cho, Jae-Kyu;Kwon, Tae-Kyoung;Choi, Yang-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4B
    • /
    • pp.207-214
    • /
    • 2008
  • Under future internet environment, wireless sensor networks will be used in a wide range of applications. A major problem for designing sensor protocol is developing the most energy efficient technique to monitor an area of interest for a long time since sensors have some constraints such as small and a limited energy level. In addition, data latency is often a critical issue since sensory data is transmitted via multi hop fashion and need to be delivered timely for taking an appropriate action. Our motivation for designing a data forwarding protocol is to minimize energy consumption while keeping data latency bound in wireless sensor networks. In this paper, we propose a data forwarding protocol that consists of wakeup scheduling and MAC protocols, the latter of which is designed to achieve load balancing. Simulation results show that the proposed framework provides more energy-efficient delivery than other protocol.

A Robust Wearable u-Healthcare Platform in Wireless Sensor Network

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • Wireless sensor network (WSN) is considered to be one of the most important research fields for ubiquitous healthcare (u-healthcare) applications. Healthcare systems combined with WSNs have only been introduced by several pioneering researchers. However, most researchers collect physiological data from medical nodes located at static locations and transmit them within a limited communication range between a base station and the medical nodes. In these healthcare systems, the network link can be easily broken owing to the movement of the object nodes. To overcome this issue, in this study, the fast link exchange minimum cost forwarding (FLE-MCF) routing protocol is proposed. This protocol allows real-time multi-hop communication in a healthcare system based on WSN. The protocol is designed for a multi-hop sensor network to rapidly restore the network link when it is broken. The performance of the proposed FLE-MCF protocol is compared with that of a modified minimum cost forwarding (MMCF) protocol. The FLE-MCF protocol shows a good packet delivery rate from/to a fast moving object in a WSN. The designed wearable platform utilizes an adaptive linear prediction filter to reduce the motion artifacts in the original electrocardiogram (ECG) signal. Two filter algorithms used for baseline drift removal are evaluated to check whether real-time execution is possible on our wearable platform. The experiment results shows that the ECG signal filtered by adaptive linear prediction filter recovers from the distorted ECG signal efficiently.

Interactive Multipath Routing Protocol for Improving the Routing Performance in Wireless Sensor Networks

  • Jung, Kwansoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.79-90
    • /
    • 2015
  • Multipath routing technique is recognized as one of the effective approaches to improve the reliability of data forwarding. However, the traditional multipath routing focuses only on how many paths are needed to ensure a desired reliability. For this purpose, the protocols construct additional paths and thus cause significant energy consumption. These problems have motivated the study for the energy-efficient and reliable data forwarding. Thus, this paper proposes an energy-efficient concurrent multipath routing protocol with a small number of paths based on interaction between paths. The interaction between paths helps to reinforce the multipath reliability by making efficient use of resources. The protocol selects several nodes located in the radio overlapped area between a pair of paths as bridge nodes for the path-interaction. In order to operate the bridge node efficiently, when the transmission failure has detected by overhearing at each path, it performs recovery transmission to recover the path failure. Simulation results show that proposed protocol is superior to the existing multipath protocols in terms of energy consumption and delivery reliability.

Self-Localized Packet Forwarding in Wireless Sensor Networks

  • Dubey, Tarun;Sahu, O.P.
    • Journal of Information Processing Systems
    • /
    • v.9 no.3
    • /
    • pp.477-488
    • /
    • 2013
  • Wireless Sensor Networks (WSNs) are comprised of sensor nodes that forward data in the shape of packets inside a network. Proficient packet forwarding is a prerequisite in sensor networks since many tasks in the network, together with redundancy evaluation and localization, depend upon the methods of packet forwarding. With the motivation to develop a fault tolerant packet forwarding scheme a Self-Localized Packet Forwarding Algorithm (SLPFA) to control redundancy in WSNs is proposed in this paper. The proposed algorithm infuses the aspects of the gossip protocol for forwarding packets and the end to end performance of the proposed algorithm is evaluated for different values of node densities in the same deployment area by means of simulations.

R3: A Lightweight Reactive Ring based Routing Protocol for Wireless Sensor Networks with Mobile Sinks

  • Yu, Sheng;Zhang, Baoxian;Yao, Zheng;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5442-5463
    • /
    • 2016
  • Designing efficient routing protocols for a wireless sensor network with mobile sinks (mWSN) is a challenging task since the network topology and data paths change frequently as sink nodes move. In this paper, we design a novel lightweight reactive ring based routing protocol called R3, which removes the need of proactively maintaining data paths to mobile sinks as they move in the network. To achieve high packet delivery ratio and low transmission cost, R3 combines ring based forwarding and trail based forwarding together. To support efficient ring based forwarding, we build a ring based structure for a network in a way such that each node in the network can easily obtain its ring ID and virtual angle information. For this purpose, we artificially create a virtual hole in the central area of the network and accordingly find a shortest cycled path enclosing the hole, which serves as base ring and is used for generating the remaining ring based structure. We accordingly present the detailed design description for R3, which only requires each node to keep very limited routing information. We derive the communication overhead by ring based forwarding. Extensive simulation results show that R3 can achieve high routing performance as compared with existing work.

Performance Improvements of Handover in Mobile-IP Protocol for Mobile Computing (이동 컴퓨팅을 위한 Mobile-IP 프로토콜에서의 핸드오버 성능개선)

  • 박성수;송영재;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6A
    • /
    • pp.832-844
    • /
    • 1999
  • In this paper, we analyzed mobile-IP protocol of IETF, and propose new method to improve performance in handover environments. In proposed method, cache agent manages mobility binding information for mobile host. Thus, effective support of mobility is possible. Also, when handover occurs, mobile host recognizes change of foreign agent, and transmits registration message to new foreign agent. However, during registration time, data packet loss is occurs in old foreign agent. Thus, we prevent data loss by using data packet buffering and forwarding in old foreign agent.According to simulation results for data packet transmission performance in the case of handover occurring, proposed method has better performance than previous method in the view of transmission delay and throughput. Especially, if handover occurs very often, data buffering and forwarding method in foreign agent could guarantee better performance.

  • PDF

Efficient Energy and Position Aware Routing Protocol for Wireless Sensor Networks

  • Shivalingagowda, Chaya;Jayasree, P.V.Y;Sah, Dinesh.K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1929-1950
    • /
    • 2020
  • Reliable and secure data transmission in the application environment assisted by the wireless sensor network is one of the major challenges. Problem like blind forwarding and data inaccessibility affect the efficiency of overall infrastructure performance. This paper proposes routing protocol for forwarding and error recovery during packet loss. The same is achieved by energy and hops distance-based formulation of the routing mechanism. The reachability of the intermediate node to the source node is the major factor that helps in improving the lifetime of the network. On the other hand, intelligent hop selection increases the reliability over continuous data transmission. The number of hop count is factor of hop weight and available energy of the node. The comparison over the previous state of the art using QualNet-7.4 network simulator shows the effectiveness of proposed work in terms of overall energy conservation of network and reliable data delivery. The simulation results also show the elimination of blind forwarding and data inaccessibility.

Efficient routing in multicast mesh by using forwarding nodes and weighted cost function

  • Vyas, Kapila;Khuteta, Ajay;Chaturvedi, Amit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5928-5947
    • /
    • 2019
  • Multicast Mesh based Mobile Ad-hoc NETworks (MANETs) provide efficient data transmission in energy restraint areas without a fixed infrastructure. In this paper, the authors present an improved version of protocol SLIMMER developed by them earlier, and name it SLIMMER-SN. Most mesh-based protocols suffer from redundancy; however, the proposed protocol controls redundancy through the concept of forwarding nodes. The proposed protocol uses remaining energy of a node to decide its energy efficiency. For measuring stability, a new metric called Stability of Node (SN) has been introduced which depends on transmission range, node density and node velocity. For data transfer, a weighted cost function selects the most energy efficient nodes / most stable nodes or a weighted combination of both. This makes the node selection criteria more dynamic. The protocol works in two steps: (1) calculating SN and (2) using SN value in the weighted cost function for selection of nodes. The study compared the proposed protocol, with other mesh-based protocols PUMA and SLIMMER, based on packet delivery ratio (PDR), throughput, end-to-end delay and average energy consumption under different simulation conditions. Results clearly demonstrate that SLIMMER-SN outperformed both PUMA and SLIMMER.

Enhanced Hybrid Routing Protocol for Load Balancing in WSN Using Mobile Sink Node

  • Kaur, Rajwinder;Shergi, Gurleen Kaur
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.268-277
    • /
    • 2016
  • Load balancing is a significant technique to prolong a network's lifetime in sensor network. This paper introduces a hybrid approach named as Load Distributing Hybrid Routing Protocol (LDHRP) composed with a border node routing protocol (BDRP) and greedy forwarding (GF) strategy which will make the routing effective, especially in mobility scenarios. In an existing solution, because of the high network complexity, the data delivery latency increases. To overcome this limitation, a new approach is proposed in which the source node transmits the data to its respective destination via border nodes or greedily until the complete data is transmitted. In this way, the whole load of a network is evenly distributed among the participating nodes. However, border node is mainly responsible in aggregating data from the source and further forwards it to mobile sink; so there will be fewer chances of energy expenditure in the network. In addition to this, number of hop counts while transmitting the data will be reduced as compared to the existing solutions HRLBP and ZRP. From the simulation results, we conclude that proposed approach outperforms well than existing solutions in terms including end-to-end delay, packet loss rate and so on and thus guarantees enhancement in lifetime.