• 제목/요약/키워드: Data flow analysis

검색결과 4,095건 처리시간 0.038초

유로 단면 부분 폐쇄가 액체로켓엔진 성능 변화에 미치는 영향 (The Effect of Partial Blockage of Flow Passage to Performance Change of a Liquid Rocket Engine)

  • 조원국
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.67-72
    • /
    • 2015
  • The analysis has been performed on the blockage effect at the propellant flow passage in a liquid rocket engine. This simulates an example of emergency situation where flow passage is partially blocked. The analysis method has been validated by predicting the pump head and flow rate within 1% precision against the measured data of turbopump-gas generator coupled test. When the oxidizer passage is reduced it is predicted that the mixture ratio decreases, the oxidizer pump head increases and the gas generator pressure increases. When the fuel passage is reduced it is predicted that the mixture ratio increases, fuel flow rate decreases and the fuel pump head increases.

플로우 경험이 휴대폰 서비스 이용에 미치는 영향에 관한 연구 (A Study on the Effects of Flow on the Utilization of Mobile Phone Service)

  • 박윤서;이승인;이효선
    • 경영과학
    • /
    • 제27권3호
    • /
    • pp.117-135
    • /
    • 2010
  • The purpose of this study is to segment the mobile phone users based on the flow types and to understand the differences in mobile phone usage behavior between the segmented groups. The 'flow' construct, which was introduced first in marketing by Hoffman and Novak[44], has been used as an important keyword for understanding consumer behavior on the World Wide Web. In this paper, we will try to use the flow aspect for the mobile market segmentation, which is one of the most fundamental tools for developing a successful marketing strategy on the mobile phone service market. We collected survey data from consumers and analyzed the data with the SPSS 12.0 package where we did ${\chi}^2$-test, factor analysis, one-way ANOVA and cluster analysis. Main results of this study are as follow. First, the flow types of the mobile phone users were classified into five types, which are named as the 'Flow' type, 'Apathy' type, 'Anxiety' type, 'Boredom' type, 'Control' type. Second, most of the results related to the usage of mobile phone service showed statistically significant differences between flow types. These findings suggest that the mobile phone service marketers should consider the various flow types of users and work out effective market segmentation strategies based on these consumer flow types.

Preparing a Construction Cash Flow Analysis Using Building Information Modeling (BIM) Technology

  • Kim, Hyunjoo;Grobler, Francois
    • Journal of Construction Engineering and Project Management
    • /
    • 제3권1호
    • /
    • pp.1-9
    • /
    • 2013
  • Construction is a competitive industry and successful contractors must be able to win bids to obtain projects. Cash flow analysis not only determines actual profit at the end of the project, but also estimates required cash resources or cash ballances at the end of every month. Cash flow analysis is important in managing a construction project; however, it requires extensive information that is not immediately available to the general contractor. Before contractors can perform cash flow analysis, they must first complete a series of pre-requisites such as the quantity take off, scheduling, and cost estimating, followed by accurate assessments of project costs incurred and billable progress made. Consequently, cash flow analysis is currently a lengthy, uncertain process. This paper suggests improved cash flow analysis can be developed using data extraction in Building Information Modeling (BIM). BIM models contain a wealth of information and tools have been developed to automate a series of process such as quantity takeoff, scheduling, and estimating. This paper describes a prototype tool to support BIM-based, automated cash flow analysis.

Rainfall-Runoff Analysis using SURR Model in Imjin River Basin

  • Linh, Trinh Ha;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.439-439
    • /
    • 2015
  • The temporal and spatial relationship of the weather elements such as rainfall and temperature is closely linked to the streamflow simulation, especially, to the flood forecasting problems. For the study area, Imjin river basin, which has the specific characteristics in geography with river cross operation between North and South Korea, the meteorological information in the northern area is totally deficiency, lead to the inaccuracy of streamflow estimation. In the paper, this problem is solved by using the combination of global (such as soil moisture content, land use) and local hydrologic components data such as weather data (precipitation, evapotranspiration, humidity, etc.) for the model-driven runoff (surface flow, lateral flow and groundwater flow) data in each subbasin. To compute the streamflow in Imjin river basin, this study is applied the hydrologic model SURR (Sejong Univ. Rainfall-Runoff) which is the continuous rainfall-runoff model used physical foundations, originally based on Storage Function Model (SFM) to simulate the intercourse of the soil properties, weather factors and flow value. The result indicates the spatial variation in the runoff response of the different subbasins influenced by the input data. The dependancy of runoff simulation accuracy depending on the qualities of input data and model parameters is suggested in this study. The southern region with the dense of gauges and the adequate data shows the good results of the simulated discharge. Eventually, the application of SURR model in Imjin riverbasin gives the accurate consequence in simulation, and become the subsequent runoff for prediction in the future process.

  • PDF

가스 터빈 Hot gas casing에 대한 유동 및 열응력 해석 (A study on the flow and thermal analysis of the hot gas casing of gas turbine)

  • 최영진;이영신;김재훈;박원식;김현수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.557-561
    • /
    • 2004
  • The hot gas casing of gas turbine has operated high temperature and thermal gradient. The structure safety of hot gas casing will be highly depend on the thermal stress. In this paper, flow and thermal stress analysis of hot gas casing is carried out using ANSYS program. The obtained temperature data by flow analysis of hot gas casing apply the load condition of the thermal analysis. The thermal stress analysis is carry out the elastic-plasticity analysis. The pressure, temperature and velocity of the flow and thermal stress of the hot gas casing are presented.

  • PDF

Study of Future Flow in Arctic Transportation using Big Data

  • 투멩자르갈;김원욱;윤대근
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2015년도 추계학술대회
    • /
    • pp.109-111
    • /
    • 2015
  • The Arctic transportation offers big opportunities as shorter transport distances, less fuel consumption, less carbon emissions, faster deliveries of goods, and more profits. The present study is aimed to investigate a future flow to deal with policy in arctic transportation using Big data analysis.

  • PDF

예외 흐름 분석을 정상 흐름 분석과 분리하여 Java프로그램에 대한 제어 흐름 그래프를 생성하는 방법 (A Method to Construct Control Flow Graphs for Java Programs by Decoupling Exception Flow Analysis from Normal Flow Analysis)

  • 조장우;창병모
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.643-650
    • /
    • 2004
  • 제어 흐름 그래프는 자료 흐름 분석과 제어 종속 분석과 같은 프로그램 분석 분야와 프로그램 슬라이싱과 테스팅과 같은 소프트웨어공학 분야에서 필요로 하는 정보이다. 이러한 분석들이 안전하고 유용하기 위해서는 제어 흐름 그래프는 예외 흐름을 포함해야 한다. 기존의 방법은 예외 흐름과 정상 흐름의 상호 의존적인 관계로 인해 두 흐름을 동시에 계산하면서 제어 흐름 그래프를 생성한다. 그러나 실제 Java 프로그램을 조사해 본 결과 두 흐름이 상호 의존적으로 필요한 경우는 거의 발생하지 않음을 알 수 있었다. 그러므로 정상 흐름과 예외 흐름을 분리해서 계산할 수 있음을 알았고, 예외 흐름을 계산하는 예외 흐름 분석을 제안한다. 그리고 예외 흐름을 표현하는 예외 흐름 그래프를 제안한다. 그리고 제어 흐름 그래프는 예외 흐름 그래프와 정상 흐름 그래프를 합병함으로써 생성될 수 있음을 보인다.

환기용 축류송풍기의 유동해석 및 모터 위치에 따른 성능 특성 연구 (Flow Analysis and Performance Evaluation of a Ventilation Axial-Flow Fan Depending on the Position of Motor)

  • 김재우;김진혁;김광용
    • 한국유체기계학회 논문집
    • /
    • 제13권4호
    • /
    • pp.25-30
    • /
    • 2010
  • Flow analysis and performa nce evaluation have been performed for a ventilation axial-flow fan with different positions of the motor. Two different positions of motor have been tested; one is in front of the impeller and the other is behind the impeller. Flow analyses are performed by solving three-dimensional Reynolds-averaged Navier-Stokes equations through a finite-volume solver. Preliminary numerical calculations are carried out to test the performances of different turbulence models, i.e., SST model, k-$\omega$ model, and k-$\varepsilon$ model with and without using empirical wall function in the flow analysis. The validation of numerical analyses has been performed in comparison with the experimental data. The numerical results for the performance characteristics of the ventilation axial-flow fan with two different positions of the motor have been presented.

A Study of Estuarine Flow using the Roving ADCP Data

  • Kang, Ki-Ryong;Iorio, Daniela Di
    • Ocean Science Journal
    • /
    • 제43권2호
    • /
    • pp.81-90
    • /
    • 2008
  • A study of estuarine flows during a neap tide was performed using 13-hour roving acoustic Doppler current profiles (ADCP) and conductivity-temperature-depth (CTD) profiles in the Altamaha River estuary, Georgia, U.S.A. The least-squared harmonic analysis method was used to fit the tidal ($M_2$) component and separate the flow into two components: the tidal and residual ($M_2$-removed) flows. We applied this method to depth-averaged data. Results show that the $M_2$ component demonstrates over 95% of the variability of observation data. As the flow was dominated by the $M_2$ tidal component in a narrow channel, the tidal ellipse distribution was essentially a back-and-forth motion. The amplitude of $M_2$ velocity component increased slightly from the river mouth (0.45 m/sec) to land (0.6 m/sec) and the phase showed fairly constant values in the center of the channel and rapidly decreasing values near the northern and southern shoaling areas. The residual flow and transport calculated from depth-averaged flow shows temporal variability over the tidal time scale. Strong landward flows appeared during slack waters which may be attributed to increased baroclinic forcing when turbulent mixing decreases.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.