• 제목/요약/키워드: Data flow analysis

검색결과 4,104건 처리시간 0.038초

일체형원자로 SMART 냉각재 순환펌프의 전산성능예측 (Computational Performance Prediction of Main Coolant Pump for the Integral Reactor SMART)

  • 김민환;이재선;박진석;김종인;김긍구
    • 한국전산유체공학회지
    • /
    • 제8권3호
    • /
    • pp.32-40
    • /
    • 2003
  • CFD analyses of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump including suction and discharge parts are presented and compared with experimental data. The purpose of the current study is to validate the CFD method for the performance analysis of the main coolant pump for SMART and to investigate the effect of suction and discharge shapes on the pump performance. To generate a performance curve, not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicts the experimental head value. In the range of the higher flow rates, the results are also in very good agreement with the experimental data, in magnitude but also in terms of slope of variation. For lower flow rates, the results shows that the analysis considering the suction and discharge well describe the typical S-shape performance curve of the axial pump.

최적 축류팬 개발을 위한 통합공정 (설계, 시제품제작, 측정, 금형가공, 사출, 조립) (Integrated Process for Development of an Optimal Axial Flow Fan (Design, RP, Measurement, Injection Molding, Assembly))

  • 박성관;최동규
    • 한국CDE학회논문집
    • /
    • 제3권3호
    • /
    • pp.201-209
    • /
    • 1998
  • To develop timely an optimal fan, a design system and a new manufacturing process used step by step have to be integrated. A small sized optimal fan for refrigerators, that was the goal on this project, was developed by the following principal processes. All processes are technologically linked in many directions: The existing fan was measured through reverse engineering. The measured data was used for the basic source of 3D design. The performance tests were carried and used as the data for the evaluation of the existing fan. Flow analysis by FANS-3D/sup [1]/ was performed at the given information (pressure drop and flow rate) to find out the configuration of optimal fan design. The flow patterns were investigated to measure the performance of fan through numerical experiment. The grid point data obtained by the above analysis turned into 3D high efficiency fan model by using CATIA. The product was manufactured by RP process (SLS, SLA) and tested the characteristic curves of the developed fan to compare with the existing fan. The modification of fan design were all examined to see any change in performance and checked to find any deficiency in assembling the fan into a duct. After the plastics flow analysis of the injection molding cycle to ensure acceptable quality fan, an optimal mold was processed by using tool-path for the newly designed fan.

  • PDF

분지관 내 물체 주위 맥동류에 대한 CFD 해석 (CFD ANALYSIS FOR A PULSATILE FLOW AROUND A BODY INSIDE A BIFURCATED TUBE)

  • 황도연;유성수;이명수;한병윤;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.183-190
    • /
    • 2009
  • The objective of this study is to get simulation data about pulsatile flow around an interior solid body inside a bifurcated tube. All the processes were based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. The bifurcated tube models were drawn with the bifurcated angle of 45 degrees, considering Murray's law about the diameter ratio. With various locations of the object, the effects of flow on the drag were considered. For the pulsating flow condition, the velocity wave profile was given as the inlet boundary condition. To validate all the result, the simulation was compared with the existing data of the other papers first. Overall flow field of both data were similar, but there was some difference at a zero velocity. Therefore the next simulation was continued with the sine wave profiles where there is no negative flow, and then the data was compared with one of the pulmonary artery velocity where there is negative flow. The final process was to calculate flow variables such as the wall shear stress (WSS) and to compute the drag of the solid object.

  • PDF

HSPF-PEST를 이용한 불연속 실측치 자동보정 (Automatic Calibration for Noncontinuous Observed Data using HSPF-PEST)

  • 전지홍;이새봄
    • 한국농공학회논문집
    • /
    • 제54권6호
    • /
    • pp.111-119
    • /
    • 2012
  • Applicability of 8 day interval flow data for the calibration of hydrologic model was evaluated using Hydrological Simulation Program-Fortran (HSPF) at Kyungan watershed. The 8 day interval flow monitored by Ministry of Environment located at upstream was calibrated and periodically validated during 2004-2008. And continuous daily flow monitored by Ministry of Construction & Transportation (MOCT) and located at the mouth was compared with daily simulated data during 2004-2007 as spatial validation. Automatic calibration tool which is Model-Independent Parameter Estimation & Uncertainty Analysis (PEST) was applied for HSPF calibration procedure. The model efficiencies for calibration and periodic validation were 0.63 and 0.88, and model performances were fair and very good, respectively, based on criteria of calibration tolerances. Continuous daily stream flow at the mouth of Kyungan watershed were good agreement with observed continuous daily stream flow with showing 0.63 NS value. The PEST program is very useful tool for HSPF hydrologic calibration using non-continuous daily stream flow as well as continuous daily stream flow. The 8 day interval flow data monitored by MOE could be used to calibrate hydrologic model if the continuous daily stream flow is unavailable.

재생펌프의 유동해석 및 누설유동에 관한 연구 (Through Flow Analysis and Leakage Flow of a Regenerative Pump)

  • 심창열;강신형
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1015-1022
    • /
    • 2003
  • Flows in a regenerative pump were calculated for several flow-rates, using the CFX-Tascflow. The calculated results show the vortex structure in the impeller and side channel. The predicted performance shows considerable discrepancy from the measured values for low flow rates. Main source of the difference is the leakage flow of pump strongly affecting the performance of pump. A simple correlation was proposed using calculated leakage flows through the simplified passage. One dimensional analysis were made for the recirculating flow and angular momentum transfer using calculated three dimensional data base.

교통기본도와 운전자 행태에 대한 미시적 분석 (A Microscopic Analysis on the Fundamental Diagram and Driver Behavior)

  • 김태완
    • 한국도로학회논문집
    • /
    • 제14권6호
    • /
    • pp.183-190
    • /
    • 2012
  • PURPOSES : The fundamental diagram provides basic information necessary in the analysis of traffic flow and highway operation. When traffic flow is congested, the density-flow points in the fundamental diagram are widely scattered and move in a stochastic manner. This paper investigates the pattern of density-flow point transitions and identifies car-following behaviors underlying the density-flow transitions. METHODS : From a microscopic analysis of 722 fundamental diagrams of NGSIM data, a total of 20 transition patterns of fundamental diagrams are identified. Prominent features of the transition patterns are explained by the behavior of the leader and follower. RESULTS : It is found out that the average speed and the speed difference between the leader and the follower critically determine the density-flow transition pattern. The density-flow path is very sensitive to the values of vehicle speed and spacing especially at low speed and high density such that most fluctuations in the fundamental diagram in the congested regime is due to the noise of speed and spacing variations. CONCLUSIONS : The result of this study suggests that the average speed, the speed difference between the leader and the follower, and the random variations of speed and spacing are dominant factors that explain the transition patterns of a fundamental diagram.

R32/125/134a를 사용한 오리피스 팽창장치의 성능실험 및 모델링 (Experimentation and Modeling of R32/125/134a Flow Through Short Tube Orifices)

  • 김용찬
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.45-54
    • /
    • 1996
  • An experimental investigation on the two-phase flow through tube orifices was performed with the refrigerant mixture of R32/125/134a(30/10/60). A series of tests were conducted to generate wide range of data at varying operation conditions with four short tubes. The tests include both single and two-phase flow conditions at the inlet of the short tube with different oil concentrations. Experimental data were presented as a function of major operating parameters and short tube diameter. Based on test results and data analysis, a semi-empirical flow model was developed to predict the mass flow rate through short tube orifices with a given set of conditions. The flow model was formed to cover both single and two-phase flow at the inlet of short tube with considering the effects of oil concentration.

  • PDF

Flow Pattern and Pressure Drop of Pure Refrigerants and Their Mixture in Horizontal Tube

  • Lim, Tae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2289-2295
    • /
    • 2005
  • Two-Phase flow pattern and pressure drop data were obtained for pure refrigerants R134a and R123 and their mixtures as test fluids in a horizontal tube. The flow pattern is observed through tubular sight glasses located at inlet and outlet of the test section. The flow map of Baker developed for air-water two-phase flow at atmospheric pressure failed to predict the observed flow patterns at the higher value of the mass velocity used in the present study. The map of Kattan et al. predicted the data well over the entire region of mass velocity selected in the present study. The measured pressure drop increased with an increase in vapor quality and mass velocity. A new two-phase multiplier was developed from a dimensional analysis of the frictional pressure drop data measured in the present experiment. This new multiplier was found successfully to correlate the frictional pressure drop.

균일 흐름과 지상 전단 흐름에 놓인 수평축 풍력터빈 블레이드의 공력 하중 비교 (Aerodynamic Load Analysis for Wind Turbine Blade in Uniform Flow and Ground Shear Flow)

  • 김진;유기완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 2007
  • Recently the diameter of the 5MW wind turbine reaches 126m, and the tower height is nearly the same with the wind turbine diameter. The blade will experience periodic inflow oscillation due to blade rotation inside the ground shear flow region, that is, the inflow velocity is maximum at uppermost position and minimum at lowermost position. In this study we compare the aerodynamic data between two inflow conditions, i.e, uniform flow and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially My at hub and $F_x$, $M_y$, $M_z$ at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue load analysis.

  • PDF

기상데이터 센서의 최적 높이를 위한 유동해석 및 비행실험 (Flow Analysis and Flight Experiment for Optimum Height of Weather Data Sensor)

  • 김영인;구성관;박창환
    • 한국항행학회논문지
    • /
    • 제22권6호
    • /
    • pp.551-556
    • /
    • 2018
  • 과거에 비해 최근에는 항공기 비행 및 기상정보측정을 위하여 드론을 많이 활용하고 있다. 관련 응용분야로는 저고도 대기자료 측정, 대기미세먼지측정, 대기 오염측정 등이 있다. 그러나 대기자료 측정센서의 장착위치는 드론비행체의 구조적 특징 때문에 프로펠러 유동의 영향, 전자파 영향, 드론의 무게중심의 변화를 고려하여 장착하여야 한다. 이중에서 프로펠러에 의한 기체 상부의 공기유동은 센서의 풍속 및 풍향에 영향을 미치므로 최적 위치를 분석하여 선정해야 한다. 본 연구는 대기자료 측정센서의 적정 높이 선정에 대한 연구로, 유동 해석을 통하여 유동특성을 파악하고 실험 데이터를 비교 분석하여 적정 센서 장착 높이를 제시한다.