• Title/Summary/Keyword: Data enrichment

Search Result 293, Processing Time 0.03 seconds

An Importance and Performance Analysis regarding Classroom Assessment - Professional General Education and MSC curriculum in the Engineering College Enrichment Program - (학습 평가에 대한 중요도 및 수행도 분석(IPA) - 공과대학 심화프로그램의 전문교양 및 MSC 교과목을 중심으로 -)

  • Noh, Jin-Ah;Choi, Yu-Hyun
    • Journal of Engineering Education Research
    • /
    • v.17 no.3
    • /
    • pp.51-58
    • /
    • 2014
  • The main objective of this research lies in estimating how much importance the educators of professional general education and MSC curriculum put on assessment, and, thereafter, take what support should be provided for the efficient assessment of education. The subjects of this research are educators of professional general education and MSC curriculum in the engineering education enrichment program at the 58 universities out of 72 universities where the accreditation for engineering education is implemented. Accordingly questionnaires were distributed to a total of 58 universities among which 136 questionnaires were collected. The data analysis methods, mean and response sample T test, were used in this research. The following conclusions were drawn from the results of this research. First, tile mean of importance and performance in the 'assessment activities' were relatively high. However, in tile assessment, the assessment performance was relatively lower than the assessment importance. Second, the results of the Importance-Performance Matrix in the 'assessment activities' was analyzed by two ways. First, Analyzed with the scale mean, The result means that Keep up the Good Work (KGW) sector included all factors. Second, Analyzed with the actual mean, The result means that KGW sector included 5 factors A, J, B, D, C. Possible Overkill(PO) sector included factors C, I. Low Priority(LP) sector included 4 factors K, E, H, L. Concentrate Here (CH) sector included factor G.

The distribution characteristics of trace elements of fine ambient particulate in Korea

  • Lim, Jong-Myoung;Lee, Jin-Hong;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.241-249
    • /
    • 2005
  • In this study, instrumental neutron activation analysis was used to measure the concentrations of about 30 trace elements in airborne particulate (PM2.5) samples at urban area of Daejeon city located in the southwestern region of Korea. An inspection of the measurement data indicates that the distribution patterns of trace elements could clearly distinguish the elements with their concentrations ranging over five orders of magnitude. The mean values for Lu and Dy were found to be the lowest at values of 0.01 and $0.04ng/m^3$, while those for K and Fe showed the highest value of 671 and $653ng/m^3$, respectively. The results of correlation analysis showed that PM2.5 concentrations can exhibit much more enhanced correlations with the elements of earth crustal components. The results of factor analysis further indicated that there are no more than six factors with statistical significance, which may exert dominant roles in regulating the elemental concentration levels in the study area. Enrichment factor analysis supports explicit interpretation of results found by this factor analysis.

Heavy metals in the surface waters and sediments of Jinhae Bay, Korea (진해만 표층수와 표층 퇴적물 중의 중금속 분포)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Kim, Jong-Kun;Park, Jun-Kun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.27-33
    • /
    • 2007
  • Heavy metals in the surface seawaters and sediments were measured in Jinhae Bay. The high concentrations of heavy metals in the seawaters were found at the stations near the islands. In the sea waters, the mean concentrations of dissolved heavy metals except for Pb were not higher than previous data in this bay. Higher heavy metal contents in the surface sediments were observed at the stations adjacent to the Kojedo or Kadukdo of the Kadoksudo. The contents of Co, Ni, Zn, Cu, As and Cd in the surface sediments showed relatively high correlation coefficients with IL and COD. The order of enrichment factors(EFs) of heavy metals in the sediments was As>Cd>Pb>Zn>Co>Cu>Hg>Ni, and the EFs of As, Cd, Pb and Zn were higher than 1.

  • PDF

Geochemical evidence for K-metasomatism related to uranium enrichment in Daejeon granitic rocks near the central Ogcheon Metamorphic Belt, Korea

  • Hwang, Jeong;Moon, Sang-Ho
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1001-1013
    • /
    • 2018
  • A new type of uranium occurrence in Korea was identified in pegmatitic and hydrothermally altered granite in the Daejeon area. The U-bearing parts typically include muscovite, pink-feldspar and sericite as alteration minerals. In this study, the geochemical characteristics and alteration age of the granitic rocks were examined to provide evidence for hydrothermally-enriched uranium. The K-Ar ages of muscovite coexisting with U-bearing minerals were determined as 123 and 128 Ma. The U-bearing rocks have relatively low ($CaO+Na_2O$), high $K_2O$ contents, and high alteration index values by major element geochemistry. The trace element geochemistry shows that the uraniferous rocks have significantly low Th/U ratios and strongly differentiated features. The rare earth element patterns indicate that the uraniferous rocks have a low total REE and LREE contents with depletion of Eu. Considering the geochemical variation of the granitic rock major, trace and rare earth elements, it can be concluded that uranium enrichment in pegmatites and altered granite should be genetically related to post-magmatic hydrothermal alteration of K-metasomatism after emplacement of the two-mica granite. This is the first report for geochemical characteristics of Mesozoic granite-related U-occurrences in South Korea. This study will help further research for uranium deposits with similarities in geological setting, mineralogy and age data between South China and Korea, and can also be expected to help solve the source problems related to high uranium concentrations in some groundwater occurring in the granitic terrane.

Application of Perturbation-based Sensitivity Analysis to Nuclear Characteristics (섭동론적 감도해석 이론의 원자로 핵특성에의 응용)

  • Byung Soo Lee;Mann Cho;Jeong Soo Han;Chung Hum Kim
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.78-84
    • /
    • 1986
  • An equation of material number density sensitivity coefficient is derived using first-order perturbation theory. The beginning of cycle of Super-Phenix I is taken as the reference system for this study. Effective multiplication factor of the reference system is defined as system response function and fuel enrichment and fuel effective density are chosen for the variation of reference input data since they are described by material number density which is a component of Boltzmann operator. The nuclear computational code system (KAERI-26 group cross section library/1DX/2DB/PERT-V) is employed for this calculation. Sensitivity coefficient of fuel enrichment on effective multiplication factor is 4.576 and sensitivity coefficient of effective fuel density on effective multiplication factor is 0.0756. This work shows that sensitivity methodology is lesser timeconsuming and gives more informations on important design parameters in comparison with the direct iterative calulation through large computer codes.

  • PDF

Separation of Cd(II) from Aqueous Solutions by A New Consecutive Process Consisting of Supported Liquid Membrane and Electrodialysis

  • Altin, Sureyya;Altin, Ahmet
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Supported liquid membrane process usually is used for recovering or enrichment of valuable metals in the industrial wastewater. But, even if the metals in the wastewater was separated with high chemical selectivity, it cannot be enough concentrated since separation performance of supported liquid membrane (SLM) process is limited by concentration gradient between feed solution and stripping solution. If metal concentration in the stripping solution to be enough low, transport of metal through membrane can be accomplishment constantly. Therefore, Electrodialysis (ED) has been placed after SLM process and the stripping solution of SLM was used as the feed solution for the ED process. Transport of ions in the solutions is successfully performed by ED process. Thus, the metal concentration in the stripping solution does not rise as to stop ion transport. Besides, valuable metals easily are concentrated by ED process for re-use. In this study, effects of operation parameters like initial Cd(II) concentration, HCl concentration in the feed solution of SLM and applied voltage are investigated on separation efficiency, flux and permeability of the both processes. As the feed solution concentration increased, all performance values has increased. When initial concentration of 100 mg/L is used, separation performances (SP) are 55% and 70%, for SLM and consecutive process, respectively. The best HCl concentration in the feed solution of SLM has determined as 2 M, in this conditions SP are 64% and 72%, for SLM and consecutive process, respectively. With increased of applied voltage on ED process, SP of the consecutive process has been raised from 72% to 83%. According to the obtained experimental data, consecutive process has better separation performance than SLM. When the separation performances of both processes were compared for the same operating conditions, it was determined higher the separation efficiency, permeability and flux values of the consecutive process, 8%, 9% and %10.6, respectively. Consequently, the use of the consecutive process increases the performance efficiency of both processes. The consecutive process studied has quite a good chemical separation efficiency, and enrichment capability. Moreover, this process requires few water and energy.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

Chlorophyll contents and expression profiles of photosynthesis-related genes in water-stressed banana plantlets

  • Sri Nanan Widiyanto;Syahril Sulaiman;Simon Duve;Erly Marwani;Husna Nugrahapraja;Diky Setya Diningrat
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.127-136
    • /
    • 2023
  • Water scarcity decreases the rate of photosynthesis and, consequently, the yield of banana plants (Musa spp). In this study, transcriptome analysis was performed to identify photosynthesis-related genes in banana plants and determine their expression profiles under water stress conditions. Banana plantlets were in vitro cultured on Murashige and Skoog agar medium with and without 10% polyethylene glycol and marked as BP10 and BK. Chlorophyll contents in the plant shoots were determined spectrophotometrically. Two cDNA libraries generated from BK and BP10 plantlets, respectively, were used as the reference for transcriptome data. Gene ontology (GO) enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and visualized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway prediction. Morphological observations indicated that water deficiency caused chlorosis and reduced the shoot chlorophyll content of banana plantlets. GO enrichment identified 52 photosynthesis-related genes that were affected by water stress. KEGG visualization revealed the pathways related to the 52 photosynthesisr-elated genes and their allocations in four GO terms. Four, 12, 15, and 21 genes were related to chlorophyll biosynthesis, the Calvin cycle, the photosynthetic electron transfer chain, and the light-harvesting complex, respectively. Differentially expressed gene (DEG) analysis using DESeq revealed that 45 genes were down-regulated, whereas seven genes were up-regulated. Four of the down-regulated genes were responsible for chlorophyll biosynthesis and appeared to cause the decrease in the banana leaf chlorophyll content. Among the annotated DEGs, MaPNDO, MaPSAL, and MaFEDA were selected and validated using quantitative real-time PCR.

Prognostic Value of an Immune Long Non-Coding RNA Signature in Liver Hepatocellular Carcinoma

  • Rui Kong;Nan Wang;Chun li Zhou;Jie Lu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.958-968
    • /
    • 2024
  • In recent years, there has been a growing recognition of the important role that long non-coding RNAs (lncRNAs) play in the immunological process of hepatocellular carcinoma (LIHC). An increasing number of studies have shown that certain lncRNAs hold great potential as viable options for diagnosis and treatment in clinical practice. The primary objective of our investigation was to devise an immune lncRNA profile to explore the significance of immune-associated lncRNAs in the accurate diagnosis and prognosis of LIHC. Gene expression profiles of LIHC samples obtained from TCGA database were screened for immune-related genes. The optimal immune-related lncRNA signature was built via correlational analysis, univariate and multivariate Cox analysis. Then, the Kaplan-Meier plot, ROC curve, clinical analysis, gene set enrichment analysis, and principal component analysis were performed to evaluate the capability of the immune lncRNA signature as a prognostic indicator. Six long non-coding RNAs were identified via correlation analysis and Cox regression analysis considering their interactions with immune genes. Subsequently, tumor samples were categorized into two distinct risk groups based on different clinical outcomes. Stratification analysis indicated that the prognostic ability of this signature acted as an independent factor. The Kaplan-Meier method was employed to conduct survival analysis, results showed a significant difference between the two risk groups. The predictive performance of this signature was validated by principal component analysis (PCA). Additionally, data obtained from gene set enrichment analysis (GSEA) revealed several potential biological processes in which these biomarkers may be involved. To summarize, this study demonstrated that this six-lncRNA signature could be identified as a potential factor that can independently predict the prognosis of LIHC patients.

Semantic Trajectory Based Behavior Generation for Groups Identification

  • Cao, Yang;Cai, Zhi;Xue, Fei;Li, Tong;Ding, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5782-5799
    • /
    • 2018
  • With the development of GPS and the popularity of mobile devices with positioning capability, collecting massive amounts of trajectory data is feasible and easy. The daily trajectories of moving objects convey a concise overview of their behaviors. Different social roles have different trajectory patterns. Therefore, we can identify users or groups based on similar trajectory patterns by mining implicit life patterns. However, most existing daily trajectories mining studies mainly focus on the spatial and temporal analysis of raw trajectory data but missing the essential semantic information or behaviors. In this paper, we propose a novel trajectory semantics calculation method to identify groups that have similar behaviors. In our model, we first propose a fast and efficient approach for stay regions extraction from daily trajectories, then generate semantic trajectories by enriching the stay regions with semantic labels. To measure the similarity between semantic trajectories, we design a semantic similarity measure model based on spatial and temporal similarity factor. Furthermore, a pruning strategy is proposed to lighten tedious calculations and comparisons. We have conducted extensive experiments on real trajectory dataset of Geolife project, and the experimental results show our proposed method is both effective and efficient.