Automatic document classification for highly interrelated classes is a demanding task that becomes more challenging when there is little labeled data for training. Such is the case of the coronavirus disease 2019 (COVID-19) clinical repository-a repository of classified and translated academic articles related to COVID-19 and relevant to the clinical practice-where a 3-way classification scheme is being applied to COVID-19 literature. During the 7th Biomedical Linked Annotation Hackathon (BLAH7) hackathon, we performed experiments to explore the use of named-entity-recognition (NER) to improve the classification. We processed the literature with OntoGene's Biomedical Entity Recogniser (OGER) and used the resulting identified Named Entities (NE) and their links to major biological databases as extra input features for the classifier. We compared the results with a baseline model without the OGER extracted features. In these proof-of-concept experiments, we observed a clear gain on COVID-19 literature classification. In particular, NE's origin was useful to classify document types and NE's type for clinical specialties. Due to the limitations of the small dataset, we can only conclude that our results suggests that NER would benefit this classification task. In order to accurately estimate this benefit, further experiments with a larger dataset would be needed.
Muhammad Ma'ruf;Justitia Cahyani Fadli;Muhammad Reza Mahendra;Lalu Muhammad Irham;Nanik Sulistyani;Wirawan Adikusuma;Rockie Chong;Abdi Wira Septama
Genomics & Informatics
/
제21권2호
/
pp.26.1-26.9
/
2023
Stevens-Johnson syndrome (SJS) produces a severe hypersensitivity reaction caused by Herpes simplex virus or mycoplasma infection, vaccination, systemic disease, or other agents. Several studies have investigated the genetic susceptibility involved in SJS. To provide further genetic insights into the pathogenesis of SJS, this study prioritized high-impact, SJS-associated pathogenic variants through integrating bioinformatic and population genetic data. First, we identified SJS-associated single nucleotide polymorphisms from the genome-wide association studies catalog, followed by genome annotation with HaploReg and variant validation with Ensembl. Subsequently, expression quantitative trait locus (eQTL) from GTEx identified human genetic variants with differential gene expression across human tissues. Our results indicate that two variants, namely rs2074494 and rs5010528, which are encoded by the HLA-C (human leukocyte antigen C) gene, were found to be differentially expressed in skin. The allele frequencies for rs2074494 and rs5010528 also appear to significantly differ across continents. We highlight the utility of these population-specific HLA-C genetic variants for genetic association studies, and aid in early prognosis and disease treatment of SJS.
Arsa, Dewa Made Sri;Lee, Jonghoon;Won, Okjae;Kim, Hyongsuk
스마트미디어저널
/
제11권7호
/
pp.94-103
/
2022
Weeds bring disadvantages to crops since they can damage them, and a clean treatment with less pollution and contamination should be developed. Artificial intelligence gives new hope to agriculture to achieve smart farming. This study delivers an automated weeds growth point detection using deep learning. This study proposes a combination of semantic graphics for generating data annotation and U-Net with pre-trained deep learning as a backbone for locating the growth point of the weeds on the given field scene. The dataset was collected from an actual field. We measured the intersection over union, f1-score, precision, and recall to evaluate our method. Moreover, Mobilenet V2 was chosen as the backbone and compared with Resnet 34. The results showed that the proposed method was accurate enough to detect the growth point and handle the brightness variation. The best performance was achieved by Mobilenet V2 as a backbone with IoU 96.81%, precision 97.77%, recall 98.97%, and f1-score 97.30%.
건물 외벽에 발생하는 균열은 시설물 구조 안전에 영향을 미치며 그 크기에 따라 위험도가 달라진다. 이에 따라 전문검사관의 현장 점검을 통해 발생 균열 두께를 정밀하게 측정할 필요가 있고 최근에는 이러한 현장 안전점검에 인공지능을 도입하려는 추세다. 그러나 기존의 균열 데이터셋은 주로 콘크리트에만 한정되어 다양한 외벽에 강인한 모델을 구축하기 어렵고 균열 두께를 측정하기 위해 정확한 마스크(Mask) 정보가 필요하나 이를 만족하는 데이터셋이 부재하다. 본 논문에서는 다양한 외벽에 강인한 균열 구획화 모델을 목적으로 2,744장의 이미지를 촬영하고 매직 완드 기법으로 라벨링을 진행해 데이터셋을 구축 후, 이를 바탕으로 딥러닝 기반 균열 구획화 모델을 개발했다. UNet-ResNet50을 최종모델로 선정 및 개발 결과, 테스트 데이터셋에 대해 81.22%의 class IoU 성능을 보였다. 본 연구의 기술을 바탕으로 균열 두께를 측정하여 건축물 안전점검에 활용될 수 있기를 기대한다.
Ramil P. Mauleon;Lord Hendrix Barboza;Frances Nikki Borja;Dmytro Chebotarov;Jeffrey Detras;Venice Juanillas;Riza Pasco;Kenneth L. McNally
한국작물학회:학술대회논문집
/
한국작물학회 2022년도 추계학술대회
/
pp.34-34
/
2022
Capacity building for bioinformatics could be achieved with the systematic training of research staff and higher degree students in the current best practices for analysis of data from 'omic-type experiments. It is anticipated that the KOICA-University of the Philippines Los Baños - International Rice Research Insitute Agricultural Genomics Research Center activities will focus on the use of next generation sequencing technology for genome sequencing and annotation, genome variant discovery for use in GWAS and QTL mapping, and transcriptome analysis of organisms important to agriculture and food security. Such activities require that researchers have high levels of knowledge and skills in bioinformatics in order to gain insights from the results of the experiments performed. In this talk the bioinformatic tools/solutions and online training materials already available will be presented, as well the upcoming resources under development in support of the project.
In the context of urban autonomous driving, where various types of traffic lights are encountered, traffic light recognition technology is of paramount importance. We have designed a high-performance traffic light recognition module tailored to scenarios encountered in domestic urban driving and devised a dataset construction process. In this paper, we focus on minimizing the camera's dependency to enhance traffic light recognition performance. The camera is used solely to distinguish the color information of traffic lights, while accurate location information of the traffic lights is obtained through localization and a map. Based on the information from these components, camera RoIs (Region of Interest) are extracted and transmitted to the embedded board. The transmitted images are then sent back to the main system for autonomous driving control. The processing time for one traffic light RoI averages 43.2 ms. We achieve processing times of average 93.4 ms through batch inference to meet real-time requirements. Additionally, we design a data construction process for collecting, refining, and storing traffic light datasets, including semi-annotation-based corrections.
최근 사용자와 컴퓨터간의 양방향 상호작용을 가능하게 하는 HCI(Human Computer Interaction) 연구를 위해 인간의 의사소통 체계와 유사한 인터페이스 기술들이 개발되고 있다. 이러한 인간과의 의사소통 과정에서 사용되는 커뮤니케이션 채널을 모달리티라고 부르며, 다양한 단말기 및 서비스 환경에 따라 최적의 사용자 인터페이스를 제공하기 위해서 두 개 이상의 모달리티를 활용하는 멀티모달 인터페이스가 활발히 연구되고 있다. 하지만, 멀티모달 인터페이스를 사용하기에는 각각의 모달리티가 갖는 정보 형식이 서로 상이하기 때문에 상호 연동이 어려우며 상호 보완적인 성능을 발휘하는데 한계가 있다. 이에 따라 본 논문은 W3C(World Wide Web Consortium)의 EMMA(Extensible Multimodal Annotation Markup language)와 MMI(Multimodal Interaction Framework)표준에 기반하여 복수의 모달리티를 상호연동할 수 있는 멀티모달 커뮤니케이터를 제안한다. 멀티모달 커뮤니케이터는 W3C 표준에 포함된 MC(Modality Component), IM(Interaction Manager), PC(Presentation Component)로 구성되며 국제 표준에 기반하여 설계하였기 때문에 다양한 모달리티의 수용 및 확장이 용이하다. 실험에서는 시선 추적과 동작 인식 모달리티를 이용하여 지도 탐색 시나리오에 멀티모달 커뮤니케이터를 적용한 사례를 제시한다.
온톨로지의 활용이 늘어나면서 의미적 유사성 검색에 대한 관심이 높아지고 있다. 본 논문에서는 질의 객체와의 의미적 유사성이 높은 객체를 검색하는 최근접 질의 기법을 제안하였다. 의미적 유사성을 측정하는 유사성 함수로는 최적 대응값 방식의 유사도 함수를 사용하였으며 주석 정보에 대한 색인을 위해 시그니처 트리를 사용하였다. 시그니처 트리는 집합 유사성 검색에서 많이 사용되는 색인 구조로서 유사성 검색에 사용하기 위해서는 검색시 각 노드를 탐색하였을 때 발견할 수 있는 유사도의 최대값을 예측할 수 있어야 한다. 이에 본 논문에서는 최적 대응값 방식의 유사도 함수에 대한 예측 최대값 함수를 제안하고 올바른 예측 함수임을 증명하였다. 또한 시그니처 트리에 동일한 시그니처가 중복되어 저장되지 않도록 구조를 개선하였다. 이는 시그니처 트리의 크기를 감소시킬 뿐만 아니라 질의 성능 또한 향상시켜 주었다. 실험의 데이타로는 대용량 온톨로지와 주석 정보 데이타를 제공하는 Gene Ontology(GO)를 사용하였다. 실험에서는 제안한 방법의 성능 향상 외에도 페이지 크기와 노드 분할 방법이 의미적 유사성 질의 성능에 미치는 영향에 대해 알아보았다.
주어진 염기서열에서 단백질로 코딩되는 영역을 예측하는 유전자 구조 예측은 유전자 annotation의 가장 핵심적인 부분으로 유전자 분석 및 유전체 프로젝트 전체에 큰 영향을 준다. 진핵생물의 유전자가 원핵생물의 유전자에 비해 더 복잡한 구조를 가지기 때문에 진핵생물의 유전자 구조 예측 모델 역시 원핵생물에 비해 다양하고 복잡한 모델로 구성되어 있다. 본 연구팀은 duration hidden markov model을 기본형태로 하여 진핵생물의 유전자 구조 예측 프로그램인 EGSP를 개발하였다. 이 프로그램은 각 생명체의 유전자 구조 예측에 필요한 파라메터를 생성하는 학습기능과, 이를 기반으로 핵산 서열을 입력으로 해서 단백질을 코딩하는 부위를 예측하여 출력하는 기능으로 구성되며, 최근의 프로그램들의 추세대로 복수 개 유전자 예측의 기능을 갖추고 있다. EGSP의 학습과 예측에 사용되는 각 파라메터의 전체 성능에 대한 효과 분석 등을 위해 여러 개 signal에 대한 개별 모델이 주는 효과 등을 분석하였다. 진핵생물의 유전자 구조 예측에 가장 많이 연구되는 human dataset을 이용하여 현재 개발된 유전자 구조 예측 프로그램인 GenScan과 GeneID, Morgan 등 보편적으로 사용되는 프로그램들과의 성능을 여러 가지 기준에서 비교한 결과, 본 프로그램이 실용성 있는 수준을 보여주는 것을 확인하였다. 그리고 진핵 미생물인 Saccharomyces cerevisiae로 성능을 테스트한 결과 만족할 만한 수준의 성능을 나타내는 것을 알 수 있었다.
The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key economic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequencing data or associated annotations for this strain are available at present, it remains challenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic complete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mechanistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.