• Title/Summary/Keyword: Data and Analysis

Search Result 85,372, Processing Time 0.07 seconds

Development of a CAE Middleware and a Visualization System for Supporting Interoperability of Continuous CAE Analysis Data (연속해석 데이터의 상호운용성을 지원하는 CAE 미들웨어와 가시화 시스템의 개발)

  • Song, In-Ho;Yang, Jeong-Sam;Jo, Hyun-Jei;Choi, Sang-Su
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.85-93
    • /
    • 2010
  • This paper proposes a CAE data translation and visualization technique that can verify time-varying continuous analysis simulation in a virtual reality (VR) environment. In previous research, the use of CAE analysis data has been problematic because of the lack of any interactive simulation controls for visualizing continuous simulation data. Moreover, the research on post-processing methods for real-time verification of CAE analysis data has not been sufficient. We therefore propose a scene graph based visualization method and a post-processing method for supporting interoperability of continuous CAE analysis data. These methods can continuously visualize static analysis data independently of any timeline; it can also continuously visualize dynamic analysis data that varies in relation to the timeline. The visualization system for continuous simulation data, which includes a CAE middleware that interfaces with various formats of CAE analysis data as well as functions for visualizing continuous simulation data and operational functions, enables users to verify simulation results with more realistic scenes. We also use the system to do a performance evaluation with regard to the visualization of continuous simulation data.

A Big Data-Driven Business Data Analysis System: Applications of Artificial Intelligence Techniques in Problem Solving

  • Donggeun Kim;Sangjin Kim;Juyong Ko;Jai Woo Lee
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • It is crucial to develop effective and efficient big data analytics methods for problem-solving in the field of business in order to improve the performance of data analytics and reduce costs and risks in the analysis of customer data. In this study, a big data-driven data analysis system using artificial intelligence techniques is designed to increase the accuracy of big data analytics along with the rapid growth of the field of data science. We present a key direction for big data analysis systems through missing value imputation, outlier detection, feature extraction, utilization of explainable artificial intelligence techniques, and exploratory data analysis. Our objective is not only to develop big data analysis techniques with complex structures of business data but also to bridge the gap between the theoretical ideas in artificial intelligence methods and the analysis of real-world data in the field of business.

Analysis of Impact Between Data Analysis Performance and Database

  • Kyoungju Min;Jeongyun Cho;Manho Jung;Hyangbae Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.244-251
    • /
    • 2023
  • Engineering or humanities data are stored in databases and are often used for search services. While the latest deep-learning technologies, such like BART and BERT, are utilized for data analysis, humanities data still rely on traditional databases. Representative analysis methods include n-gram and lexical statistical extraction. However, when using a database, performance limitation is often imposed on the result calculations. This study presents an experimental process using MariaDB on a PC, which is easily accessible in a laboratory, to analyze the impact of the database on data analysis performance. The findings highlight the fact that the database becomes a bottleneck when analyzing large-scale text data, particularly over hundreds of thousands of records. To address this issue, a method was proposed to provide real-time humanities data analysis web services by leveraging the open source database, with a focus on the Seungjeongwon-Ilgy, one of the largest datasets in the humanities fields.

An Analysis Method of Superlarge Manufacturing Process Data Using Data Cleaning and Graphical Analysis (데이터 정제와 그래프 분석을 이용한 대용량 공정데이터 분석 방법)

  • 박재홍;변재현
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.2
    • /
    • pp.72-85
    • /
    • 2002
  • Advances in computer and sensor technology have made it possible to obtain superlarge manufacturing process data in real time, letting us extract meaningful information from these superlarge data sets. We propose a systematic data analysis procedure which field engineers can apply easily to manufacture quality products. The procedure consists of data cleaning and data analysis stages. Data cleaning stage is to construct a database suitable for statistical analysis from the original superlarge manufacturing process data. In the data analysis stage, we suggest a graphical easy-to-implement approach to extract practical information from the cleaned database. This study will help manufacturing companies to achieve six sigma quality.

Analyzing RDF Data in Linked Open Data Cloud using Formal Concept Analysis

  • Hwang, Suk-Hyung;Cho, Dong-Heon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.57-68
    • /
    • 2017
  • The Linked Open Data(LOD) cloud is quickly becoming one of the largest collections of interlinked datasets and the de facto standard for publishing, sharing and connecting pieces of data on the Web. Data publishers from diverse domains publish their data using Resource Description Framework(RDF) data model and provide SPARQL endpoints to enable querying their data, which enables creating a global, distributed and interconnected dataspace on the LOD cloud. Although it is possible to extract structured data as query results by using SPARQL, users have very poor in analysis and visualization of RDF data from SPARQL query results. Therefore, to tackle this issue, based on Formal Concept Analysis, we propose a novel approach for analyzing and visualizing useful information from the LOD cloud. The RDF data analysis and visualization technique proposed in this paper can be utilized in the field of semantic web data mining by extracting and analyzing the information and knowledge inherent in LOD and supporting classification and visualization.

The Study on Application of Data Gathering for the site and Statistical analysis process (초기 데이터 분석 로드맵을 적용한 사례 연구)

  • Choi, Eun-Hyang;Ree, Sang-Bok
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.226-234
    • /
    • 2010
  • In this thesis, we present process that remove mistake of data before statistical analysis. If field data which is not simple examination about validity of data, we cannot believe analyzed statistics information. As statistical analysis information is produced based on data to be input in statistical analysis process, the data to be input should be free of error. In this paper, we study the application of statistical analysis road map that can enhance application on site by organizing basic theory and approaching on initial data exploratory phase, essential step before conducting statistical analysis. Therefore, access to statistical analysis can be enhanced and reliability on result of analysis can be secured by conducting correct statistical analysis.

  • PDF

A Study on the Sentiment Analysis of City Tour Using Big Data

  • Se-won Jeon;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.112-117
    • /
    • 2023
  • This study aims to find out what tourists' interests and perceptions are like through online big data. Big data for a total of five years from 2018 to 2022 were collected using the Textom program. Sentiment analysis was performed with the collected data. Sentiment analysis expresses the necessity and emotions of city tours in online reviews written by tourists using city tours. The purpose of this study is to extract and analyze keywords representing satisfaction. The sentiment analysis program provided by the big data analysis platform "TEXTOM" was used to study positives and negatives based on sentiment analysis of tourists' online reviews. Sentiment analysis was conducted by collecting reviews related to the city tour. The degree of positive and negative emotions for the city tour was investigated and what emotional words were analyzed for each item. As a result of big data sentiment analysis to examine the emotions and sentiments of tourists about the city tour, 93.8% positive and 6.2% negative, indicating that more than half of the tourists are positively aware. This paper collects tourists' opinions based on the analyzed sentiment analysis, understands the quality characteristics of city tours based on the analysis using the collected data, and sentiment analysis provides important information to the city tour platform for each region.

A study of data acquisition system of defense analysis & evaluation by systems engineering process (시스템엔지니어링 프로세스에 의한 국방 분석평가자료 수집체계 연구)

  • Choe, Sun-Hwang;Min, Seong-Gi
    • 시스템엔지니어링워크숍
    • /
    • s.4
    • /
    • pp.135-140
    • /
    • 2004
  • Defense analysis & evaluation includes menace analysis, validation analysis, problem analysis, scientific technical analysis, technical trad-off analysis, alternative analysis, cost analysis, etc. Reliable related data is required to perform these analysis activities efficiently. but in case of these defense analysis & evaluation data acquisition system, the data is insufficient and scattered about each organization. the data of database system is also not utilized sufficiently. abroad technical data is also low level data such as catalog or military officer's collection. therefore, this paper propose defense analysis & evaluation data acquisition system by systems engineering process. we also propose construction method of data acquisition system.

  • PDF

A study of data acquisition system of defense analysis & evaluation by systems engineering process (시스템엔지니어링 프로세스에 의한 국방 분석평가자료 수집체계 연구)

  • Min, Sungki;Choi, Soonhwang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.69-76
    • /
    • 2005
  • Defense analysis & evaluation includes menace analysis, validation analysis, problem analysis, scientific technical analysis, technical trade-off analysis, alternative analysis, cost analysis, etc. Reliable related data is required to perform these analysis activities efficiently. but in case of these defense analysis & evaluation data acquisition system, the data is insufficient and scattered about each organization. The data of database system is also not utilized sufficiently. Abroad technical data is also low level data such as catalog or military officer's collection. Therefore, this paper propose defense analysis & evaluation data acquisition system by systems engineering process. we also propose construction method of data acquisition system.

  • PDF

Development of data analysis and experiment evaluation supporting system(DAEXESS) (실험데이타 분석 및 평가지원시스템(DAEXESS) 개발)

  • 이현철;오인석;심봉식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.119-126
    • /
    • 1997
  • Most of human factors experiments in nuclear industry domain produe lots of experimental data, thus much time is reauired to analyze the data. DAEXESS was developed to reduce resource demands necessary for the analysis work through systematic data analysis requirements and automated data processing based on computer technology. Physilolgical data, human behavior recording data, system log data and verbal protocl can be collected, synthesized and easily analyzed with with respect to time domain in DAEXESS so that analyser is able to look into inte- grated information on operating context. DAEXESS assists analyser to carry out qualitative and quantitative data analysis easily.

  • PDF