• Title/Summary/Keyword: Data Visualize

Search Result 553, Processing Time 0.023 seconds

Diagnostic System of Modeling Errors Generated from IGES CAD Data Exchange (IGES CAD 데이터의 교환에서 오류 진단 시스템)

  • Park, Sang-Ho;Park, Jong-Wook;Han, Soon-Heung;Choi, Young;Yang, Jung-Sam;Lee, Byung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.218-225
    • /
    • 2003
  • A diagnostic system has been developed which reports modeling errors generated when exchanging CAD data using IGES (Initial Graphics Exchange Specification) format. The system determines whether the CAD data contains errors. It also helps to define the criteria for determining the integrity and interoperability of CAD data with downstream applications of another CAD/CAM/CAE/PDM systems. The methodology of our algorithms is to analyze IGES model data by identifying errors and anomalies with respect to the diagnosis of geometry and topology. The GUI (Graphic User Interface) of the developed system helps users to input values and to visualize diagnostic results at real time.

An Efficient Visualization Technique of Large-Scale Nodes Structure with Linked Information

  • Mun Su-Youl;Ha Seok-Wun
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.49-55
    • /
    • 2005
  • This study is to suggest a visualization technique to display the relations of associated data in an optimal way when trying to display the whole data on a limited space by dealing with a large amount of data with linked information. For example, if you track an IP address through several steps and display the data on a screen, or if you visualize the human gene information on a 3-dimensional space, then it becomes even easier to understand the data flow in such cases. In order to simulate the technique given in this study, the given algorithm was applied to a large number of nodes made in a random fashion to optimize the data and we visually observed the result. According to the result, the technique given in this study is more efficient than any previous method in terms of visualization and utilizing space and allows to more easily understand the whole structure of a node because it consists of sub-groups.

A Haptic Rendering Technique for 3D Objects with Vector Field (벡터 필드를 가진 3차원 오브젝트의 햅틱 렌더링 기법)

  • Kim, Lae-Hyun;Park, Se-Hyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.4
    • /
    • pp.216-222
    • /
    • 2006
  • Vector field has been commonly used to visualize the data set which is invisible or is hard to explain. For instance, it could be used to visualize scientific data such as the direction and amount of wind and water field, transfer of heat through thermally conductive materials, and electromagnetic field. In this paper, we present a technique to enable intuitive recognition of the data though haptic feedback along with visual feedback. To add tactile information to graphical vector field, we model a haptic vector field and then apply it to the haptic map to guide a user to destination and haptic simulation of water field on 2D images whish can be used ill everyday life. These systems allow one to recognize vector information intuitively through haptic interface. We expect that the haptic rendering technique of vector field can be applied to various applications such as education, training, and entertainment.

Parametric Imaging with Respiratory Motion Correction for Contrast-Enhanced Ultrasonography (조영증강 초음파 진단에서 호흡에 의한 흔들림을 보정한 파라미터 영상 생성 기법)

  • Kim, Ho-Joon;Cho, Yun-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • In this paper, we introduce a method to visualize the contrast diffusion patterns and the dynamic vascular patterns in a contrast-enhanced ultrasound image sequence. We present an imaging technique to visualize parameters such as contrast arrival time, peak intensity time, and contrast decay time in contrast-enhanced ultrasound data. The contrast flow pattern and its velocity are important for characterizing focal liver lesions. We propose a method for representing the contrast diffusion patterns as an image. In the methods, respiratory motion may degrade the accuracy of the parametric images. Therefore, we present a respiratory motion tracking technique that uses dynamic weights and a momentum factor with respect to the respiration cycle. Through the experiment using 72 CEUS data sets, we show that the proposed method makes it possible to overcome the limitation of analysis by the naked eye and improves the reliability of the parametric images by compensating for respiratory motion in contrast-enhanced ultrasonography.

Visualizing Excercise Prescription Using Visual Path Map (비쥬얼패스맵을 이용한 운동처방 과정 시각화)

  • Ham, Jun-Seok;Jeong, Chan-Soon;Ko, Il-Ju
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.9
    • /
    • pp.1182-1189
    • /
    • 2011
  • We named the system Visual Path Map which visualizes the distribution of clusters according to characteristics and entire process about exercise prescription, and we purpose to visualize a process according to exercise prescription. Visual Path Map visualizes the distribution of clusters according to characteristics, current and object distribution, and changed distribution for prescription. So it visualizes paths from current distribution to object distribution according to prescription. We used SOM in order to express properties along subjects in Visual Path map, and visualized distribution of clusters about physical characteristics, body mass index, and age information of 1,500 ordinary people. Also we visualize practical exercise prescription according to real data of expert of exercise prescription.

Enhancement of MRI angiogram with modified MIP method

  • Lee, Dong-Hyuk;Kim, Jong-Hyo;Han, Man-Chung;Min, Byong-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.72-74
    • /
    • 1997
  • We have developed a 3-D image processing and display technique that include image resampling, modification of MIP, and fusion of MIP image and volumetric rendered image. This technique facilitates the visualization of the three-dimensional spatial relationship between vasculature and surrounding organs by overlapping the MIP image on the volumetric rendered image of the organ. We applied this technique to a MR brain image data to produce an MRI angiogram that is overlapped with 3-D volume rendered image of brain. MIP technique was used to visualize the vasculature of brain, and volume rendering was used to visualize the other structures of brain. The two images are fused after adjustment of contrast and brightness levels of each image in such a way that both the vasculature and brain structure are well visualized either by selecting the maximum value of each image or by assigning different color table to each image. The resultant image with this technique visualizes both the brain structure and vasculature simultaneously, allowing the physicians to inspect their relationship more easily. The presented technique will be useful for surgical planning for neurosurgery.

  • PDF

The 2D/3D Time-of-Flight, Phase Contrast and Contrast Enhanced Magnetic Resonance Angiograph (2D/3D Time-of-Flight, Phase Contrast 그리고 Contrast Enhanced 자기 공명 혈관조영기법에 관한 연구)

  • Yi, Yun;Choi, Jung-Hwan;Park, Seung-Hun;Kim, Si-Seung;Chung, Sung-Taek
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.291-298
    • /
    • 2003
  • It is important to visualize a lesion accurately in diagnosis of disease. Many diseases result in a change of lesion. Magnetic resonance angiography can visualize the morphological characteristics of blood vessel. The magnetic resonance angiography (MRA) can be categorized to time-of-flight, phase contrast, and contrast enhanced MRA. In this paper, we introduce a principle, sequence, and feature of angiography For better image quality we describe data processing methods and show several applications to human bodies

A Study on the Support System for Midship Structural Analysis (선체중앙부해석 지원시스템 개발에 관한 연구)

  • Shin, Hyun-Kyoung;Son, Ho-Cheol;Kwon, Myung-Joon;Song, Jae-Young;Kim, Jong-Hyun;Lee, Jeong-Ryul;Kang, Ho-Seung;Yeon, Kyu-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.86-95
    • /
    • 1998
  • CAD/CAM program developers have made substantial progress in enabling engineers to design, analyze, visualize, visualize, and simulate the performance of structures and systems. Many researchers, however, agree that there is still a way to go before the existing commercial computer software can be used in ship structural analysis to their full potential as solvers which can identify opportunities to reduce man-hours and cut costs. CAD systems used for these works in ship yards are general-purposed and not custom-tailored for ship structures, which force end-users to do tiresome and routine works. The new preprocessor "MeshGen" announced in this study can load several ship types and user-friendly generate their FE meshes employing the object-oriented approach based on the parametric and top-down design. Also "MeshGen" reduces dramatically the time required to prepare CAD models under window-based environments on desktop personal computers and makes it much easier and faster for end-users to change topology and material properties.

  • PDF

Noise Source Identification and Acoustic Radiation Power Reduction of Hard Disk Drive Using Sound Intensity (음향 인텐시티를 이용한 하드디스크 드라이브의 소음원 파악 및 음향파워 제어)

  • Kang, Seong-Woo;Han, Yun-Sik;Hwang, Tae-Yeon;Son, Young;Koo, Ja-Choon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1540-1548
    • /
    • 2000
  • Sound intensity techniques and ODS(Operational Deflection Shape) techniques are applied to identify the acoustic noise source of a hard disk drive and its control system. The sound intensity is used to visualize the noise source locations, and the ODS information to visualize the vibration pattern and to obtain the dynamic characteristics of the noise sources. The measurement systems are customized to accurately measure the sound intensity and ODS distributions of HDD system in space domains as well as frequency domains. The measurement systems for the sound absorption and transmission loss of materials are also used to support the background data for the efficient noise control. Using the visual information of source locations and its dynamic characteristics, the partial noise barrier structure and optimum absorption are designed and its controlled sound power level is proved to be under 3.1 Bel(Idle)/3.3Bel (Seek) which is the lowest level in the disk drive industry.

  • PDF

Visualizing the Peripheral Primo Vascular System in Mice Skin by Using the Polymer Mercox

  • Stefanov, Miroslav;Kim, Jungdae
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.75-79
    • /
    • 2015
  • Objectives: As the peripheral part of the primo vascular system (PVS) is difficult to visualize, we used a vascular casting material Mercox injected directly into the skin to take advantage of a simple procedure to visualize PVS structures as primo vessels (PVs) and primo nodes (PNs) in the skin. Methods: Two colors of the polymer Mercox were injected into mouse skin. After a partial maceration of the whole body with potassium hydroperoxide solution, we anatomized it under a stereomicroscope to trace the Mercox that had been injected into the PVS. Results: Injection of Mercox directly into the skin allowed the PVs and the PNs to be visualized. This approach can fill the PVS when the material is ejected out of the PVs or PNs. The shapes, sizes, and topographic positions of the nodes and the vessels are the hallmarks used to identify the PVS in skin when Mercox is used as a tracer. Conclusion: The direct injection of the casting material Mercox into skin, with modified partial maceration procedures, is a promising method for visualizing the PVs and the PNs in the peripheral part of the PVS in skin. The polymer Mercox can penetrate through the primo pores of the primo vascular wall and fill the PVs and the PNs. The data prove that PVs and PNs exist on the hypodermal layer of the skin.