Journal of the Korea Society of Computer and Information
/
v.29
no.11
/
pp.243-250
/
2024
Collaborative filtering is one of the most widely known implementation methods of recommender systems, which recommends items that similar users have preferred in the past. Therefore, similarity measurement is a very important factor that determines the performance of the system. In this study, in order to solve the shortcomings of the existing single or integrated heuristic similarity measures, the genetic algorithm was used to calculate the optimal similarity between users per item genre. In addition, in order to solve the data scalability problem, the number of users for calculating similarity for each genre was limited according to a preset threshold, and the average of the ratings of the items was used to solve the data sparsity problem. Through performance experiments, the optimal probabilities of the genetic operators were obtained and the prediction accuracy performance was analyzed. As a result, it was confirmed that the performance of the proposed method was superior to the existing methods, especially in a sparse data environment.
Proceedings of the Korean Operations and Management Science Society Conference
/
2005.05a
/
pp.621-628
/
2005
Scalability of clustering algorithms is critical issues facing the data mining community. This is particularly true for computationally intense tasks such as data clustering. Random sampling of instances is one possible means of achieving scalability but a pervasive problem with this approach is how to deal with the noise that this introduces in the evaluation of the learning algorithm. This paper develops a new optimization based clustering approach using an algorithms specifically designed for noisy performance. Numerical results illustrate that with this algorithm substantial benefits can be achieved in terms of computational time without sacrificing solution quality.
Software Defined Network (SDN) separates control plane and data plane to achieve benefits such as centralized management, centralized provisioning, lower device cost and more flexibility. In SDN, scalability is an important issue. Centralized controller can be a bottle neck and many research tried to solve this issue on the control plan. However, scalability issue does not only happen in the control plane, but also happen in the data plane. In the data plane, flow table is an important component and its size is limited. In a large network operated by SDN technology, the performance of the network can be highly degraded because of the size limitation of a flow table. In this paper, we propose a ranking-based flow replacement method, Flow Table Management (FTM), to overcome this problem.
Journal of Korea Spatial Information System Society
/
v.8
no.3
/
pp.105-115
/
2006
A sensor network which uses DCS(Data-Centric Storage) stores the same data into the same sensor node. Thus it has a hot spot problem when the sensor network grows and the same data arise frequently. In the past researches of the sensor network using DCS, the hot spot problem caused by growing the sensor network was ignored because they only concentrated on managing stored sensor data efficiently. In this paper, we proposed a non-equal region split method that supports efficient scalability on storing multi-dimensional sensor data. This method can reduce the storing cost, as the sensor network is growing, by dividing whole space into regions which have the same number of sensor nodes according to the distribution of sensor nodes, and storing and managing sensor data within each region. Moreover, this method can distribute the energy consumption of sensor nodes by increasing the number of regions according to the size of the sensor network, the number of sensor nodes within the sensor network, and the quantity of sensor data. Therefore it can help to increase the life time and the scalability of the sensor network.
Recently, the demand for connection between various heterogeneous dataset and BIM as a construction data model hub is increasing. In the past, in order to connect model between BIM and heterogeneous dataset, related dataset was stored in the RDBMS, and the service was provided by programming a method to link with the BIM object. This approach causes problems such as the need to modify the database schema and business logic, and the migration of existing data when requirements change. This problem adversely affects the scalability, reusability, and maintainability of model information. This study proposes an ontology BIM-based knowledge service framework considering the connectivity and scalability between BIM and heterogeneous dataset. Through the proposed framework, ontology BIM mapping, semantic information query method for linking between knowledge-expressing dataset and BIM are presented. In addition, to identify the effectiveness of the proposed method, the prototype is developed. Also, the effectiveness and considerations of the ontology BIM-based knowledge service framework are derived.
Service-oriented computing, the effective paradigm for developing service applications by using reusable services, becomes popular. In service-oriented computing, service consumer has no responsibility for managing services, just invokes services what service providers are producing. On the other hand, service providers should manage any resources and data for service consumers can use the service anytime and anywhere. However, it is hard service providers manage the quality of the services because an unspecified number of service consumers. Therefore, service scalability for providing services with higher quality of services specified in a service level agreement becomes a potential problem in service-oriented computing. There have been many researches for scalability in network, database, and distributed computing area. But a research about a definition of service scalability and metrics of measuring service scalability is still not mature in service engineering area. In this paper, we construct a service network which connects multiple service nodes, and integrate all the resources to manage it. And we also present a service scalability framework for managing service scalability by using a mechanism of service migration or replication. In section 3, we, firstly, present the structure of the scalability management framework and basic functionalities. In section 4, we propose scalability enhancement mechanism which is needed to release functionality of the framework. In section 5, we design and implement the framework by using proposed mechanism. In section 6, we demonstrate the result of our case study which dynamically manages services in multi-nodes environment by applying our framework. Through the case study, we show the applicability of our scalability management framework and mechanism.
The Journal of Korean Institute of Next Generation Computing
/
v.15
no.4
/
pp.80-88
/
2019
Software Defined Networking (SDN) is the future network paradigm of decoupling control and data functions. In SDN structure, it is hard to address scalability in case of large-scale networks because single controller managed thousands of switches in a centralized fashion. Most of previous studies have focused on horizontal scalability, where distributed controllers are assigned to network devices. However, they have abstracted the control plane and the application plane into a single controller. The layer of the common SDN architecture is divided into data plane, control plane, and application plane, but the control plane and application plane have been modeled as a single controller although they are logically separated. In this paper, we propose a analytical traffic model considering the both application plane and control plane based on queuing theory. This model can be used to address scalability issues such as controller placement problem without complicated simulations.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.563-564
/
2017
The core of the cloud computing technology is the data center in that the networking technology is important. Cloud data centers are comprised of tens or even hundreds of thousands of physical servers, so networking technology is required for high-speed data transfer. These networking technologies also require scalability, fault tolerance, and agility. For these requirements, many multi-path based schemes have been proposed. However, it was mainly used for load balancing of traffic and select a path randomly. In this paper, a scheme that can construct a multipath using software defined networking technology and transmit the traffic in parallel by using the multipath to achieve a fast transmission speed, solve the scalability problem and fault tolerance is proposed.
Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.4
/
pp.807-816
/
2015
During the last decade most of coordinated security breaches are performed by the means of botnets, which is a large overlay network of compromised computers being controlled by remote botmaster. Due to high volumes of traffic to be analyzed, the challenge is posed by managing tradeoff between system scalability and accuracy. We propose a novel Hadoop-based P2P botnet detection method solving the problem of scalability and having high accuracy. Moreover, our approach is characterized not to require labeled data and applicable to encrypted traffic as well.
Communications for Statistical Applications and Methods
/
v.29
no.4
/
pp.441-451
/
2022
In the era of bigdata, scalability is a crucial issue in learning models. Among many others, the Alternating Direction of Multipliers (ADMM, Boyd et al., 2011) algorithm has gained great popularity in solving large-scale problems efficiently. In this article, we propose applying the ADMM algorithm to solve the least square problem penalized by the pairwise-difference penalty, frequently used to identify group structures among coefficients. ADMM algorithm enables us to solve the high-dimensional problem efficiently in a unified fashion and thus allows us to employ several different types of penalty functions such as LASSO, Elastic Net, SCAD, and MCP for the penalized problem. Additionally, the ADMM algorithm naturally extends the algorithm to distributed computation and real-time updates, both desirable when dealing with large amounts of data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.