• Title/Summary/Keyword: Data Scalability Problem

Search Result 116, Processing Time 0.032 seconds

A Scalable Multicasting with Group Mobility Support in Mobile Ad Hoc Networks

  • Kim, Kap-Dong;Lee, Kwang-Il;Park, Jun-Hee;Kim, Sang-Ha
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In mobile ad hoc networks, an application scenario requires mostly collaborative mobility behavior. The key problem of those applications is scalability with regard to the number of multicast members as well as the number of the multicast group. To enhance scalability with group mobility, we have proposed a multicast protocol based on a new framework for hierarchical multicasting that is suitable for the group mobility model in MANET. The key design goal of this protocol is to solve the problem of reflecting the node's mobility in the overlay multicast tree, the efficient data delivery within the sub-group with group mobility support, and the scalability problem for the large multicast group size. The results obtained through simulations show that our approach supports scalability and efficient data transmission utilizing the characteristic of group mobility.

Development of Web-based Intelligent Recommender Systems using Advanced Data Mining Techniques (개선된 데이터 마이닝 기술에 의한 웹 기반 지능형 추천시스템 구축)

  • Kim Kyoung-Jae;Ahn Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.3
    • /
    • pp.41-56
    • /
    • 2005
  • Product recommender system is one of the most popular techniques for customer relationship management. In addition, collaborative filtering (CF) has been known to be one of the most successful recommendation techniques in product recommender systems. However, CF has some limitations such as sparsity and scalability problems. This study proposes hybrid cluster analysis and case-based reasoning (CBR) to address these problems. CBR may relieve the sparsity problem because it recommends products using customer profile and transaction data, but it may still give rise to scalability problem. Thus, this study uses cluster analysis to reduce search space prior to CBR for scalability Problem. For cluster analysis, this study employs hybrid genetic and K-Means algorithms to avoid possibility of convergence in local minima of typical cluster analyses. This study also develops a Web-based prototype system to test the superiority of the proposed model.

  • PDF

User-based Collaborative Filtering Recommender Technique using MapReduce (맵리듀스를 이용한 사용자 기반 협업 필터링 추천 기법)

  • Yun, So-young;Youn, Sung-dae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.331-333
    • /
    • 2015
  • Data is increasing explosively with the spread of networks and mobile devices and there are problems in effectively processing the rapidly increasing data using existing recommendation techniques. Therefore, researches are being conducted on how to solve the scalability problem of the collaborative filtering technique. In this paper applies MapReduce, which is a distributed parallel process framework, to the collaborative filtering technique to reduce the scalability problem and heighten accuracy. The proposed technique applies MapReduce and the index technique to a user-based collaborative filtering technique and as a method which improves neighbor numbers which are used in similarity calculations and neighbor suitability, scalability and accuracy improvement effects can be expected.

  • PDF

An Agent-based Approach for Distributed Collaborative Filtering (분산 협력 필터링에 대한 에이전트 기반 접근 방법)

  • Kim, Byeong-Man;Li, Qing;Howe Adele E.;Yeo, Dong-Gyu
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.953-964
    • /
    • 2006
  • Due to the usefulness of the collaborative filtering, it has been widely used in both the research and commercial field. However, there are still some challenges for it to be more efficient, especially the scalability problem, the sparsity problem and the cold start problem. In this paper. we address these problems and provide a novel distributed approach based on agents collaboration for the problems. We have tried to solve the scalability problem by making each agent save its users ratings and broadcast them to the users friends so that only friends ratings and his own ratings are kept in an agents local database. To reduce quality degradation of recommendation caused by the lack of rating data, we introduce a method using friends opinions instead of real rating data when they are not available. We also suggest a collaborative filtering algorithm based on user profile to provide new users with recommendation service. Experiments show that our suggested approach is helpful to the new user problem as well as is more scalable than traditional centralized CF filtering systems and alleviate the sparsity problem.

A Study on Improvement of Blockchain Scalability (블록체인 확장성 개선 연구)

  • Lee, Daesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.86-87
    • /
    • 2018
  • As blockchain technology has the potential to revolutionize trust models and business processes across industries, applications are expected to be endless. However, this technology is still in the early stage, and the scalability caused by the accumulation of transaction data due to the increase of blocks is emerging as a serious problem. In this paper, we propose various alternatives to solve the scalability problem.

  • PDF

Performance Improvement of a Collaborative Recommendation System using Feature Selection (속성추출을 이용한 협동적 추천시스템의 성능 향상)

  • Yoo, Sang-Jong;Kwon, Young- S.
    • IE interfaces
    • /
    • v.19 no.1
    • /
    • pp.70-77
    • /
    • 2006
  • One of the problems in developing a collaborative recommendation system is the scalability. To alleviate the scalability problem efficiently, enhancing the performance of the recommendation system, we propose a new recommendation system using feature selection. In our experiments, the proposed system using about a third of all features shows the comparable performances when compared with using all features in light of precision, recall and number of computations, as the number of users and products increases.

A Hierarchical Context Dissemination Framework for Managing Federated Clouds

  • Famaey, Jeroen;Latre, Steven;Strassner, John;Turck, Filip De
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.567-582
    • /
    • 2011
  • The growing popularity of the Internet has caused the size and complexity of communications and computing systems to greatly increase in recent years. To alleviate this increased management complexity, novel autonomic management architectures have emerged, in which many automated components manage the network's resources in a distributed fashion. However, in order to achieve effective collaboration between these management components, they need to be able to efficiently exchange information in a timely fashion. In this article, we propose a context dissemination framework that addresses this problem. To achieve scalability, the management components are structured in a hierarchy. The framework facilitates the aggregation and translation of information as it is propagated through the hierarchy. Additionally, by way of semantics, context is filtered based on meaning and is disseminated intelligently according to dynamically changing context requirements. This significantly reduces the exchange of superfluous context and thus further increases scalability. The large size of modern federated cloud computing infrastructures, makes the presented context dissemination framework ideally suited to improve their management efficiency and scalability. The specific context requirements for the management of a cloud data center are identified, and our context dissemination approach is applied to it. Additionally, an extensive evaluation of the framework in a large-scale cloud data center scenario was performed in order to characterize the benefits of our approach, in terms of scalability and reasoning time.

A Scalability based Energy Model for Sustainability of Blockchain Networks (블록체인 네트워크의 지속 가능성을 위한 확장성 기반 에너지 모델)

  • Seung Hyun Jeon;Bokrae Jung
    • Journal of Industrial Convergence
    • /
    • v.21 no.8
    • /
    • pp.51-58
    • /
    • 2023
  • Blockchains have recently struggled to design for the ideal distributed trust networks by solving scalability trilemma. However, local conflicts between some countries lead to imbalance on energy distribution. Besides, blockchain networks (e.g., Bitcoin) currently consume enormous energy for transaction and mining. The existing data volume based trust model evaluated an increasing blockchain size better than Lubin's trust model in scalability trilemma. In this paper, we propose a scalability based energy model to evaluate sustainability for blockchain networks, considering energy consumption for transaction, time duration, and the blockchain size of growing blockchain networks. Through the rigorous numerical analysis, we compare the proposed scalability based energy model with the existing model for the satisfaction and optimal blockchain size. Thus, the scalability based energy model will provide an assessment tool to choose the proper blockchain networks to solve scalability trilemma problem and prove sustainability.

A Real-time Service Recommendation System using Context Information in Pure P2P Environment (Pure P2P 환경에서 컨텍스트 정보를 이용한 실시간 서비스 추천 시스템)

  • Lee Se-Il;Lee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.887-892
    • /
    • 2005
  • Under pure P2P environments, collaborative filtering must be provided with only a few service items by real time information without accumulated data. However, in case of collaborative filtering with only a few service items collected locally, quality of recommended service becomes low. Therefore, it is necessary to research a method to improve quality of recommended service by users' context information. But because a great volume of users' context information can be recognized in a moment, there can be a scalability problem and there are limitations in supporting differentiated services according to fields and items. In this paper, we solved the scalability problem by clustering context information Per each service field and classifying il per each user, using SOM. In addition, we could recommend proper services for users by measuring the context information of the users belonging to the similar classification to the service requester among classified data and then using collaborative filtering.

Collaborative filtering based Context Information for Real-time Recommendation Service in Ubiquitous Computing

  • Lee Se-ll;Lee Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.110-115
    • /
    • 2006
  • In pure P2P environment, it is possible to provide service by using a little real-time information without using accumulated information. But in case of using only a little information that was locally collected, quality of recommendation service can be fallen-off. Therefore, it is necessary to study a method to improve qualify of recommendation service by using users' context information. But because a great volume of users' context information can be recognized in a moment, there can be a scalability problem and there are limitations in supporting differentiated services according to fields and items. In this paper, we solved the scalability problem by clustering context information per each service field and classifying it per each user, using SOM. In addition, we could recommend proper services for users by quantifying the context information of the users belonging to the similar classification to the service requester among classified data and then using collaborative filtering.